Suppr超能文献

复发相关基因特征可优化结直肠癌无复发生存预测。

Recurrence-associated gene signature optimizes recurrence-free survival prediction of colorectal cancer.

机构信息

Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai JiaoTong University, China.

出版信息

Mol Oncol. 2017 Nov;11(11):1544-1560. doi: 10.1002/1878-0261.12117. Epub 2017 Sep 23.

Abstract

High throughput gene expression profiling has showed great promise in providing insight into molecular mechanisms. Metastasis-related mRNAs may potentially enrich genes with the ability to predict cancer recurrence, therefore we attempted to build a recurrence-associated gene signature to improve prognostic prediction of colorectal cancer (CRC). We identified 2848 differentially expressed mRNAs by analyzing CRC tissues with or without metastasis. For the selection of prognostic genes, a LASSO Cox regression model (least absolute shrinkage and selection operator method) was employed. Using this method, a 13-mRNA signature was identified and then validated in two independent Gene Expression Omnibus cohorts. This classifier could successfully discriminate the high-risk patients in discovery cohort [hazard ratio (HR) = 5.27, 95% confidence interval (CI) 2.30-12.08, P < 0.0001). Analysis in two independent cohorts yielded consistent results (GSE14333: HR = 4.55, 95% CI 2.18-9.508, P < 0.0001; GSE33113: HR = 3.26, 95% CI 2.16-9.16, P = 0.0176). Further analysis revealed that the prognostic value of this signature was independent of tumor stage, postoperative chemotherapy and somatic mutation. Receiver operating characteristic (ROC) analysis showed that the area under ROC curve of this signature was 0.8861 and 0.8157 in the discovery and validation cohort, respectively. A nomogram was constructed for clinicians, and did well in the calibration plots. Furthermore, this 13-mRNA signature outperformed other known gene signatures, including oncotypeDX colon cancer assay. Single-sample gene-set enrichment analysis revealed that a group of pathways related to drug resistance, cancer metastasis and stemness were significantly enriched in the high-risk patients. In conclusion, this 13-mRNA signature may be a useful tool for prognostic evaluation and will facilitate personalized management of CRC patients.

摘要

高通量基因表达谱分析在深入了解分子机制方面显示出巨大的潜力。转移相关的 mRNAs 可能潜在地富集具有预测癌症复发能力的基因,因此我们试图构建一个与复发相关的基因特征,以改善结直肠癌(CRC)的预后预测。我们通过分析有或没有转移的 CRC 组织,鉴定出 2848 个差异表达的 mRNAs。为了选择预后基因,我们使用了 LASSO Cox 回归模型(最小绝对值收缩和选择算子方法)。使用这种方法,我们鉴定了一个由 13 个 mRNA 组成的特征,并在两个独立的基因表达谱数据库队列中进行了验证。该分类器可以成功区分发现队列中的高危患者[风险比(HR)= 5.27,95%置信区间(CI)2.30-12.08,P < 0.0001)]。在两个独立的队列中的分析产生了一致的结果(GSE14333:HR = 4.55,95%CI 2.18-9.508,P < 0.0001;GSE33113:HR = 3.26,95%CI 2.16-9.16,P = 0.0176)。进一步分析表明,该特征的预后价值独立于肿瘤分期、术后化疗和体细胞突变。接收者操作特征(ROC)分析表明,该特征在发现队列和验证队列中的 ROC 曲线下面积分别为 0.8861 和 0.8157。为临床医生构建了一个列线图,并且在校准图中表现良好。此外,该 13-mRNA 特征优于其他已知的基因特征,包括 oncotypeDX 结肠癌检测。单样本基因集富集分析表明,一组与耐药性、癌症转移和干性相关的途径在高危患者中显著富集。总之,该 13-mRNA 特征可能是一种用于预后评估的有用工具,并将有助于结直肠癌患者的个性化管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59de/5664005/a306e27aebb5/MOL2-11-1544-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验