Suppr超能文献

利用计算机模拟工作流程探索蛋白质-蛋白质相互作用作为抗癌治疗的药物靶点

Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows.

作者信息

Goncearenco Alexander, Li Minghui, Simonetti Franco L, Shoemaker Benjamin A, Panchenko Anna R

机构信息

National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20894, USA.

School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.

出版信息

Methods Mol Biol. 2017;1647:221-236. doi: 10.1007/978-1-4939-7201-2_15.

Abstract

We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.

摘要

我们描述了一种计算协议,以辅助设计针对蛋白质-蛋白质相互作用的小分子和肽类药物,特别是用于抗癌治疗。为实现这一目标,我们探索了多种策略,包括寻找结合热点、纳入化学相似性和生物活性数据,以及从同源蛋白质复合物中采样相似的结合位点。我们通过半自动工作流程的示例展示了如何整合现有的跨学科资源。最后,我们讨论了几个主要问题,包括耐药突变的发生、药物混杂性以及双效抑制剂的设计。

相似文献

1
Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows.
Methods Mol Biol. 2017;1647:221-236. doi: 10.1007/978-1-4939-7201-2_15.
3
Designing dual inhibitors of Mdm2/MdmX: Unexpected coupling of water with gatekeeper Y100/99.
Proteins. 2017 Aug;85(8):1493-1506. doi: 10.1002/prot.25310. Epub 2017 May 16.
4
Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction.
Med Res Rev. 2016 Sep;36(5):789-844. doi: 10.1002/med.21393. Epub 2016 Jun 15.
5
An Effective Virtual Screening Protocol To Identify Promising p53-MDM2 Inhibitors.
J Chem Inf Model. 2016 Jun 27;56(6):1216-27. doi: 10.1021/acs.jcim.5b00747. Epub 2016 Jun 7.
6
A computational analysis of binding modes and conformation changes of MDM2 induced by p53 and inhibitor bindings.
J Comput Aided Mol Des. 2013 Nov;27(11):965-74. doi: 10.1007/s10822-013-9693-z. Epub 2013 Nov 22.
7
Dual targeting of MDM2 with a novel small-molecule inhibitor overcomes TRAIL resistance in cancer.
Carcinogenesis. 2016 Nov 1;37(11):1027-1040. doi: 10.1093/carcin/bgw088.
9
Benzothiazole derivatives as p53-MDM2 inhibitors: design, ADMET predictions, molecular docking, MM-GBSA Assay, MD simulations studies.
J Biomol Struct Dyn. 2025 Apr;43(6):2993-3004. doi: 10.1080/07391102.2023.2294836. Epub 2023 Dec 18.
10
Targeting of p53 peptide analogues to anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy.
Biochem Biophys Res Commun. 2014 Jan 17;443(3):882-7. doi: 10.1016/j.bbrc.2013.12.054. Epub 2013 Dec 14.

引用本文的文献

1
2
DiPPI: A Curated Data Set for Drug-like Molecules in Protein-Protein Interfaces.
J Chem Inf Model. 2024 Jul 8;64(13):5041-5051. doi: 10.1021/acs.jcim.3c01905. Epub 2024 Jun 22.
3
Systematic investigation of machine learning on limited data: A study on predicting protein-protein binding strength.
Comput Struct Biotechnol J. 2023 Dec 20;23:460-472. doi: 10.1016/j.csbj.2023.12.018. eCollection 2024 Dec.
4
Drug discovery by targeting the protein-protein interactions involved in autophagy.
Acta Pharm Sin B. 2023 Nov;13(11):4373-4390. doi: 10.1016/j.apsb.2023.07.016. Epub 2023 Jul 20.
6
Determining human-coronavirus protein-protein interaction using machine intelligence.
Med Nov Technol Devices. 2023 Jun;18:100228. doi: 10.1016/j.medntd.2023.100228. Epub 2023 Apr 6.
7
Identification of hub genes involved in cisplatin resistance in head and neck cancer.
J Genet Eng Biotechnol. 2023 Jan 30;21(1):9. doi: 10.1186/s43141-023-00468-y.
8
AlphaFold, Artificial Intelligence (AI), and Allostery.
J Phys Chem B. 2022 Sep 1;126(34):6372-6383. doi: 10.1021/acs.jpcb.2c04346. Epub 2022 Aug 17.
10

本文引用的文献

2
PubChem BioAssay: 2017 update.
Nucleic Acids Res. 2017 Jan 4;45(D1):D955-D963. doi: 10.1093/nar/gkw1118. Epub 2016 Nov 29.
3
Developing science gateways for drug discovery in a grid environment.
Springerplus. 2016 Aug 9;5(1):1300. doi: 10.1186/s40064-016-2914-x. eCollection 2016.
4
Chemical Variations on the p53 Reactivation Theme.
Pharmaceuticals (Basel). 2016 May 13;9(2):25. doi: 10.3390/ph9020025.
5
MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.
Nucleic Acids Res. 2016 Jul 8;44(W1):W494-501. doi: 10.1093/nar/gkw374. Epub 2016 May 5.
6
SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.
Int J Mol Sci. 2016 Apr 12;17(4):547. doi: 10.3390/ijms17040547.
7
2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein-protein interactions.
Database (Oxford). 2016 Mar 15;2016. doi: 10.1093/database/baw007. Print 2016.
8
How To Design a Successful p53-MDM2/X Interaction Inhibitor: A Thorough Overview Based on Crystal Structures.
ChemMedChem. 2016 Apr 19;11(8):757-72. doi: 10.1002/cmdc.201500487. Epub 2015 Dec 16.
9
BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1045-53. doi: 10.1093/nar/gkv1072. Epub 2015 Oct 19.
10
PubChem Substance and Compound databases.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13. doi: 10.1093/nar/gkv951. Epub 2015 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验