Centre for Neuroscience and Discipline of Medical Biochemistry, Flinders Medical Science and Technology, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia.
The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
Neurochem Int. 2018 Jan;112:278-287. doi: 10.1016/j.neuint.2017.08.009. Epub 2017 Aug 14.
Oxidative stress is recognised as central in a range of neurological diseases including Amyotrophic lateral sclerosis (ALS), a disease characterised by fast progressing death of motor neurons in the brain and spinal cord. Cellular pathology includes cytosolic protein aggregates in motor neurons and glia of which potentially cytotoxic hyper-phosphorylated fragments of the Transactive response DNA Binding Protein 43 kDa (TDP-43) constitute a major component. This is closely associated with an additional loss of nuclear TDP-43 expression indicating a "loss of function" mechanism, accelerating motor neuron (MN) loss. Furthermore, mutations in TDP-43 cause familial ALS and ALS-like disease in animal models. In this study, we investigated the role of glutathione (GSH) in modulating oxidative stress responses in TDP-43 pathology in motor neuron NSC-34 cells. Results demonstrate that depletion of GSH produces pathology similar to that of mutant TDP-43, including occurrence of cytosolic aggregates, TDP-43 phosphorylation and nuclear clearing of endogenous TDP-43. We also demonstrate that introduction of mutant TDP-43 and silencing of endogenous TDP-43, but not overexpression of wild-type TDP-43, result in similar pathology, including depletion of intracellular GSH, possibly resulting from a decreased expression of a regulatory subunit of ɣ-glutamylcysteine ligase (GCLM), a rate limiting enzyme in GSH synthesis. Importantly, treatment of mutant cells with GSH monoethyl ester (GSHe) that directly increases intracellular GSH and bypasses the need for GSH synthesis, protected against mutant-induced TDP-43 pathology, including reducing aggregate formation, nuclear clearance, reactive oxygen species (ROS) production and cell death. Our data strongly suggest that oxidative stress is central to TDP-43 pathology and may result from a loss of function affecting GSH synthesis and that treatments directly aimed at restoring cellular GSH content may be beneficial in preventing cell death in TDP-43-mediated ALS.
氧化应激被认为是一系列神经疾病的核心,包括肌萎缩侧索硬化症(ALS),这种疾病的特征是大脑和脊髓中的运动神经元快速进行性死亡。细胞病理学包括运动神经元和神经胶质中的细胞质蛋白聚集体,其中潜在细胞毒性的 Transactive response DNA Binding Protein 43 kDa(TDP-43)的过度磷酸化片段构成主要成分。这与核 TDP-43 表达的额外丧失密切相关,表明存在“功能丧失”机制,加速运动神经元(MN)丧失。此外,TDP-43 的突变导致家族性 ALS 和动物模型中的 ALS 样疾病。在这项研究中,我们研究了谷胱甘肽(GSH)在调节 TDP-43 病理学中的氧化应激反应中的作用,该病理学存在于运动神经元 NSC-34 细胞中。结果表明,GSH 的耗竭会产生类似于突变 TDP-43 的病理学,包括细胞质聚集体的出现、TDP-43 的磷酸化和内源性 TDP-43 的核清除。我们还证明,引入突变 TDP-43 和沉默内源性 TDP-43,但不是过表达野生型 TDP-43,会导致类似的病理学,包括细胞内 GSH 的耗竭,这可能是由于调节亚基的表达减少所致ɣ-谷氨酰半胱氨酸连接酶(GCLM),这是 GSH 合成的限速酶。重要的是,用 GSH 单乙酯(GSHe)处理突变细胞,GSHe 可直接增加细胞内 GSH,并且不需要 GSH 合成,可防止突变诱导的 TDP-43 病理学,包括减少聚集体形成、核清除、活性氧(ROS)产生和细胞死亡。我们的数据强烈表明,氧化应激是 TDP-43 病理学的核心,可能是由于功能丧失影响 GSH 合成所致,而直接针对恢复细胞内 GSH 含量的治疗方法可能有助于预防 TDP-43 介导的 ALS 中的细胞死亡。