Suppr超能文献

不同的结构机制决定了蛋白激酶Cα的底物亲和力和激酶活性。

Distinct structural mechanisms determine substrate affinity and kinase activity of protein kinase Cα.

作者信息

Lee Sangbae, Devamani Titu, Song Hyun Deok, Sandhu Manbir, Larsen Adrien, Sommese Ruth, Jain Abhinandan, Vaidehi Nagarajan, Sivaramakrishnan Sivaraj

机构信息

From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010.

the Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, and.

出版信息

J Biol Chem. 2017 Sep 29;292(39):16300-16309. doi: 10.1074/jbc.M117.804781. Epub 2017 Aug 15.

Abstract

Protein kinase Cα (PKCα) belongs to the family of AGC kinases that phosphorylate multiple peptide substrates. Although the consensus sequence motif has been identified and used to explain substrate specificity for PKCα, it does not inform the structural basis of substrate-binding and kinase activity for diverse substrates phosphorylated by this kinase. The transient, dynamic, and unstructured nature of this protein-protein interaction has limited structural mapping of kinase-substrate interfaces. Here, using multiscale MD simulation-based predictions and FRET sensor-based experiments, we investigated the conformational dynamics of the kinase-substrate interface. We found that the binding strength of the kinase-substrate interaction is primarily determined by long-range columbic interactions between basic (Arg/Lys) residues located N-terminally to the phosphorylated Ser/Thr residues in the substrate and by an acidic patch in the kinase catalytic domain. Kinase activity stemmed from conformational flexibility in the region C-terminal to the phosphorylated Ser/Thr residues. Flexibility of the substrate-kinase interaction enabled an Arg/Lys two to three amino acids C-terminal to the phosphorylated Ser/Thr to prime a catalytically active conformation, facilitating phosphoryl transfer to the substrate. The structural mechanisms determining substrate binding and catalytic activity formed the basis of diverse binding affinities and kinase activities of PKCα for 14 substrates with varying degrees of sequence conservation. Our findings provide insight into the dynamic properties of the kinase-substrate interaction that govern substrate binding and turnover. Moreover, this study establishes a modeling and experimental method to elucidate the structural dynamics underlying substrate selectivity among eukaryotic kinases.

摘要

蛋白激酶Cα(PKCα)属于AGC激酶家族,可磷酸化多种肽底物。尽管已经确定了共有序列基序并用于解释PKCα的底物特异性,但它并未揭示该激酶磷酸化的多种底物的底物结合和激酶活性的结构基础。这种蛋白质 - 蛋白质相互作用的瞬时、动态和非结构化性质限制了激酶 - 底物界面的结构映射。在这里,我们使用基于多尺度分子动力学(MD)模拟的预测和基于荧光共振能量转移(FRET)传感器的实验,研究了激酶 - 底物界面的构象动力学。我们发现,激酶 - 底物相互作用的结合强度主要由底物中磷酸化的丝氨酸/苏氨酸残基N端的碱性(精氨酸/赖氨酸)残基之间的长程库仑相互作用以及激酶催化结构域中的酸性区域决定。激酶活性源于磷酸化的丝氨酸/苏氨酸残基C端区域的构象灵活性。底物 - 激酶相互作用的灵活性使磷酸化的丝氨酸/苏氨酸C端两到三个氨基酸处的精氨酸/赖氨酸能够引发催化活性构象,促进磷酸基团转移到底物上。决定底物结合和催化活性的结构机制构成了PKCα对14种具有不同程度序列保守性的底物的不同结合亲和力和激酶活性的基础。我们的研究结果深入了解了控制底物结合和周转的激酶 - 底物相互作用的动态特性。此外,本研究建立了一种建模和实验方法,以阐明真核激酶中底物选择性背后的结构动力学。

相似文献

1
Distinct structural mechanisms determine substrate affinity and kinase activity of protein kinase Cα.
J Biol Chem. 2017 Sep 29;292(39):16300-16309. doi: 10.1074/jbc.M117.804781. Epub 2017 Aug 15.
2
Substrate Affinity Differentially Influences Protein Kinase C Regulation and Inhibitor Potency.
J Biol Chem. 2016 Oct 14;291(42):21963-21970. doi: 10.1074/jbc.M116.737601. Epub 2016 Aug 23.
5
The Role of Regulatory Domains in Maintaining Autoinhibition in the Multidomain Kinase PKCα.
J Biol Chem. 2017 Feb 17;292(7):2873-2880. doi: 10.1074/jbc.M116.768457. Epub 2017 Jan 3.
8
Kinase inhibitors allosterically disrupt a regulatory interaction to enhance PKCα membrane translocation.
J Biol Chem. 2021 Jan-Jun;296:100339. doi: 10.1016/j.jbc.2021.100339. Epub 2021 Jan 26.
10
Protein kinase C inhibits type VI adenylyl cyclase by phosphorylating the regulatory N domain and two catalytic C1 and C2 domains.
J Biol Chem. 2002 May 3;277(18):15721-8. doi: 10.1074/jbc.M111537200. Epub 2002 Feb 27.

引用本文的文献

1
Control of stress-activated Cdc42 dynamics by the MAP kinase Sty1-NDR kinase Orb6 regulatory axis.
iScience. 2025 Aug 5;28(9):113298. doi: 10.1016/j.isci.2025.113298. eCollection 2025 Sep 19.
2
A palmitoyl transferase chemical-genetic system to map ZDHHC-specific S-acylation.
Nat Biotechnol. 2024 Oct;42(10):1548-1558. doi: 10.1038/s41587-023-02030-0. Epub 2024 Jan 8.
4
A Comprehensive Phylogenetic Analysis of the MAP4K Family in the Green Lineage.
Front Plant Sci. 2021 Aug 13;12:650171. doi: 10.3389/fpls.2021.650171. eCollection 2021.
5
Allosteric communication regulates ligand-specific GPCR activity.
FEBS J. 2021 Apr;288(8):2502-2512. doi: 10.1111/febs.15826. Epub 2021 Apr 5.
6
Kinase inhibitors allosterically disrupt a regulatory interaction to enhance PKCα membrane translocation.
J Biol Chem. 2021 Jan-Jun;296:100339. doi: 10.1016/j.jbc.2021.100339. Epub 2021 Jan 26.
7
ER/K-link-Leveraging a native protein linker to probe dynamic cellular interactions.
Methods Enzymol. 2021;647:173-208. doi: 10.1016/bs.mie.2020.10.002. Epub 2020 Nov 18.
8
Activation Microswitches in Adenosine Receptor A Function as Rheostats in the Cell Membrane.
Biochemistry. 2020 Oct 27;59(42):4059-4071. doi: 10.1021/acs.biochem.0c00626. Epub 2020 Oct 15.
9
Comprehensive profiling of the STE20 kinase family defines features essential for selective substrate targeting and signaling output.
PLoS Biol. 2019 Mar 21;17(3):e2006540. doi: 10.1371/journal.pbio.2006540. eCollection 2019 Mar.
10
Bitopic Inhibition of ATP and Substrate Binding in Ser/Thr Kinases through a Conserved Allosteric Mechanism.
Biochemistry. 2018 Nov 13;57(45):6387-6390. doi: 10.1021/acs.biochem.8b00729. Epub 2018 Oct 30.

本文引用的文献

1
The Role of Regulatory Domains in Maintaining Autoinhibition in the Multidomain Kinase PKCα.
J Biol Chem. 2017 Feb 17;292(7):2873-2880. doi: 10.1074/jbc.M116.768457. Epub 2017 Jan 3.
2
Substrate Affinity Differentially Influences Protein Kinase C Regulation and Inhibitor Potency.
J Biol Chem. 2016 Oct 14;291(42):21963-21970. doi: 10.1074/jbc.M116.737601. Epub 2016 Aug 23.
3
Revisiting protein kinase-substrate interactions: Toward therapeutic development.
Sci Signal. 2016 Mar 22;9(420):re3. doi: 10.1126/scisignal.aad4016.
4
Phosphoryl Transfer Reaction Snapshots in Crystals: INSIGHTS INTO THE MECHANISM OF PROTEIN KINASE A CATALYTIC SUBUNIT.
J Biol Chem. 2015 Jun 19;290(25):15538-15548. doi: 10.1074/jbc.M115.643213. Epub 2015 Apr 28.
5
GneimoSim: a modular internal coordinates molecular dynamics simulation package.
J Comput Chem. 2014 Dec 5;35(31):2245-55. doi: 10.1002/jcc.23743. Epub 2014 Sep 27.
6
Comparative Protein Structure Modeling Using MODELLER.
Curr Protoc Bioinformatics. 2014 Sep 8;47:5.6.1-32. doi: 10.1002/0471250953.bi0506s47.
7
Conserved modular domains team up to latch-open active protein kinase Cα.
J Biol Chem. 2014 Jun 20;289(25):17812-29. doi: 10.1074/jbc.M113.534750. Epub 2014 Apr 30.
8
Protein structure refinement of CASP target proteins using GNEIMO torsional dynamics method.
J Chem Inf Model. 2014 Feb 24;54(2):508-17. doi: 10.1021/ci400484c. Epub 2014 Jan 16.
9
CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data.
J Comput Chem. 2013 Sep 30;34(25):2135-45. doi: 10.1002/jcc.23354. Epub 2013 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验