Lee Sangbae, Devamani Titu, Song Hyun Deok, Sandhu Manbir, Larsen Adrien, Sommese Ruth, Jain Abhinandan, Vaidehi Nagarajan, Sivaramakrishnan Sivaraj
From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010.
the Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, and.
J Biol Chem. 2017 Sep 29;292(39):16300-16309. doi: 10.1074/jbc.M117.804781. Epub 2017 Aug 15.
Protein kinase Cα (PKCα) belongs to the family of AGC kinases that phosphorylate multiple peptide substrates. Although the consensus sequence motif has been identified and used to explain substrate specificity for PKCα, it does not inform the structural basis of substrate-binding and kinase activity for diverse substrates phosphorylated by this kinase. The transient, dynamic, and unstructured nature of this protein-protein interaction has limited structural mapping of kinase-substrate interfaces. Here, using multiscale MD simulation-based predictions and FRET sensor-based experiments, we investigated the conformational dynamics of the kinase-substrate interface. We found that the binding strength of the kinase-substrate interaction is primarily determined by long-range columbic interactions between basic (Arg/Lys) residues located N-terminally to the phosphorylated Ser/Thr residues in the substrate and by an acidic patch in the kinase catalytic domain. Kinase activity stemmed from conformational flexibility in the region C-terminal to the phosphorylated Ser/Thr residues. Flexibility of the substrate-kinase interaction enabled an Arg/Lys two to three amino acids C-terminal to the phosphorylated Ser/Thr to prime a catalytically active conformation, facilitating phosphoryl transfer to the substrate. The structural mechanisms determining substrate binding and catalytic activity formed the basis of diverse binding affinities and kinase activities of PKCα for 14 substrates with varying degrees of sequence conservation. Our findings provide insight into the dynamic properties of the kinase-substrate interaction that govern substrate binding and turnover. Moreover, this study establishes a modeling and experimental method to elucidate the structural dynamics underlying substrate selectivity among eukaryotic kinases.
蛋白激酶Cα(PKCα)属于AGC激酶家族,可磷酸化多种肽底物。尽管已经确定了共有序列基序并用于解释PKCα的底物特异性,但它并未揭示该激酶磷酸化的多种底物的底物结合和激酶活性的结构基础。这种蛋白质 - 蛋白质相互作用的瞬时、动态和非结构化性质限制了激酶 - 底物界面的结构映射。在这里,我们使用基于多尺度分子动力学(MD)模拟的预测和基于荧光共振能量转移(FRET)传感器的实验,研究了激酶 - 底物界面的构象动力学。我们发现,激酶 - 底物相互作用的结合强度主要由底物中磷酸化的丝氨酸/苏氨酸残基N端的碱性(精氨酸/赖氨酸)残基之间的长程库仑相互作用以及激酶催化结构域中的酸性区域决定。激酶活性源于磷酸化的丝氨酸/苏氨酸残基C端区域的构象灵活性。底物 - 激酶相互作用的灵活性使磷酸化的丝氨酸/苏氨酸C端两到三个氨基酸处的精氨酸/赖氨酸能够引发催化活性构象,促进磷酸基团转移到底物上。决定底物结合和催化活性的结构机制构成了PKCα对14种具有不同程度序列保守性的底物的不同结合亲和力和激酶活性的基础。我们的研究结果深入了解了控制底物结合和周转的激酶 - 底物相互作用的动态特性。此外,本研究建立了一种建模和实验方法,以阐明真核激酶中底物选择性背后的结构动力学。