Sirci Francesco, Napolitano Francesco, Pisonero-Vaquero Sandra, Carrella Diego, Medina Diego L, di Bernardo Diego
Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy.
NPJ Syst Biol Appl. 2017 Aug 25;3:23. doi: 10.1038/s41540-017-0022-3. eCollection 2017.
We performed an integrated analysis of drug chemical structures and drug-induced transcriptional responses. We demonstrated that a network representing three-dimensional structural similarities among 5452 compounds can be used to automatically group together drugs with similar scaffolds, physicochemical parameters and mode-of-action. We compared the structural network to a network representing transcriptional similarities among a subset of 1309 drugs for which transcriptional response were available in the Connectivity Map data set. Analysis of structurally similar, but transcriptionally different drugs sharing the same MOA enabled us to detect and remove weak and noisy transcriptional responses, greatly enhancing the reliability of transcription-based approaches to drug discovery and drug repositioning. Cardiac glycosides exhibited the strongest transcriptional responses with a significant induction of pathways related to epigenetic regulation, which suggests an epigenetic mechanism of action for these drugs. Drug classes with the weakest transcriptional responses tended to induce expression of cytochrome P450 enzymes, hinting at drug-induced drug resistance. Analysis of transcriptionally similar, but structurally different drugs with unrelated MOA, led us to the identification of a 'toxic' transcriptional signature indicative of lysosomal stress (lysosomotropism) and lipid accumulation (phospholipidosis) partially masking the target-specific transcriptional effects of these drugs. We found that this transcriptional signature is shared by 258 compounds and it is associated to the activation of the transcription factor TFEB, a master regulator of lysosomal biogenesis and autophagy. Finally, we built a predictive Random Forest model of these 258 compounds based on 128 physicochemical parameters, which should help in the early identification of potentially toxic drug candidates.
我们对药物化学结构和药物诱导的转录反应进行了综合分析。我们证明,一个代表5452种化合物三维结构相似性的网络可用于自动将具有相似支架、物理化学参数和作用模式的药物归为一组。我们将该结构网络与一个代表1309种药物子集转录相似性的网络进行了比较,这些药物的转录反应可在连通性图谱数据集中获得。对具有相同作用模式但结构相似但转录不同的药物进行分析,使我们能够检测并去除微弱和有噪声的转录反应,大大提高了基于转录的药物发现和药物重新定位方法的可靠性。强心苷表现出最强的转录反应,显著诱导了与表观遗传调控相关的通路,这表明这些药物的作用机制是表观遗传机制。转录反应最弱的药物类别倾向于诱导细胞色素P450酶的表达,这暗示了药物诱导的耐药性。对转录相似但结构不同且作用模式不相关的药物进行分析,使我们识别出一种“毒性”转录特征,该特征指示溶酶体应激(溶酶体趋向性)和脂质蓄积(磷脂沉着症),部分掩盖了这些药物的靶点特异性转录效应。我们发现,这258种化合物共有这种转录特征,并且它与转录因子TFEB的激活有关,TFEB是溶酶体生物发生和自噬的主要调节因子。最后,我们基于128个物理化学参数构建了这258种化合物的预测随机森林模型,这将有助于早期识别潜在的有毒药物候选物。