Suppr超能文献

使用P300棋盘式拼写器中的颜色评估脑机接口性能。

Evaluating brain-computer interface performance using color in the P300 checkerboard speller.

作者信息

Ryan D B, Townsend G, Gates N A, Colwell K, Sellers E W

机构信息

Department of Psychology, East Tennessee State University, Johnson City, TN, USA.

Department of Computer Science, Algoma University, Sault Ste. Marie, Ontario, Canada.

出版信息

Clin Neurophysiol. 2017 Oct;128(10):2050-2057. doi: 10.1016/j.clinph.2017.07.397. Epub 2017 Aug 8.

Abstract

OBJECTIVE

Current Brain-Computer Interface (BCI) systems typically flash an array of items from grey to white (GW). The objective of this study was to evaluate BCI performance using uniquely colored stimuli.

METHODS

In addition to the GW stimuli, the current study tested two types of color stimuli (grey to color [GC] and color intensification [CI]). The main hypotheses were that in a checkboard paradigm, unique color stimuli will: (1) increase BCI performance over the standard GW paradigm; (2) elicit larger event-related potentials (ERPs); and, (3) improve offline performance with an electrode selection algorithm (i.e., Jumpwise).

RESULTS

Online results (n=36) showed that GC provides higher accuracy and information transfer rate than the CI and GW conditions. Waveform analysis showed that GC produced higher amplitude ERPs than CI and GW. Information transfer rate was improved by the Jumpwise-selected channel locations in all conditions.

CONCLUSIONS

Unique color stimuli (GC) improved BCI performance and enhanced ERPs. Jumpwise-selected electrode locations improved offline performance.

SIGNIFICANCE

These results show that in a checkerboard paradigm, unique color stimuli increase BCI performance, are preferred by participants, and are important to the design of end-user applications; thus, could lead to an increase in end-user performance and acceptance of BCI technology.

摘要

目的

当前的脑机接口(BCI)系统通常会将一系列项目从灰色闪烁为白色(GW)。本研究的目的是使用独特颜色的刺激来评估BCI的性能。

方法

除了GW刺激外,本研究还测试了两种颜色刺激(从灰色到彩色[GC]和颜色增强[CI])。主要假设是,在棋盘范式中,独特颜色刺激将:(1)比标准GW范式提高BCI性能;(2)引发更大的事件相关电位(ERP);以及,(3)通过电极选择算法(即Jumpwise)提高离线性能。

结果

在线结果(n = 36)表明,与CI和GW条件相比,GC提供了更高的准确率和信息传输率。波形分析表明,GC产生的ERP幅度高于CI和GW。在所有条件下,Jumpwise选择的通道位置提高了信息传输率。

结论

独特颜色刺激(GC)提高了BCI性能并增强了ERP。Jumpwise选择的电极位置提高了离线性能。

意义

这些结果表明,在棋盘范式中,独特颜色刺激可提高BCI性能,受到参与者的青睐,并且对最终用户应用程序的设计很重要;因此,可能会提高最终用户的性能并增加对BCI技术的接受度。

相似文献

1
Evaluating brain-computer interface performance using color in the P300 checkerboard speller.
Clin Neurophysiol. 2017 Oct;128(10):2050-2057. doi: 10.1016/j.clinph.2017.07.397. Epub 2017 Aug 8.
2
Evaluating Brain-Computer Interface Performance in an ALS Population: Checkerboard and Color Paradigms.
Clin EEG Neurosci. 2018 Mar;49(2):114-121. doi: 10.1177/1550059417737443. Epub 2017 Oct 27.
4
Evaluation of flashing stimuli shape and colour heterogeneity using a P300 brain-computer interface speller.
Neurosci Lett. 2019 Sep 14;709:134385. doi: 10.1016/j.neulet.2019.134385. Epub 2019 Jul 17.
5
Faces, locations, and tools: a proposed two-stimulus P300 brain computer interface.
J Neural Eng. 2019 Jun;16(3):036026. doi: 10.1088/1741-2552/aaff22. Epub 2019 Jan 16.
7
A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
J Neural Eng. 2013 Apr;10(2):026001. doi: 10.1088/1741-2560/10/2/026001. Epub 2013 Jan 31.
8
Visual stimuli for the P300 brain-computer interface: a comparison of white/gray and green/blue flicker matrices.
Clin Neurophysiol. 2009 Aug;120(8):1562-6. doi: 10.1016/j.clinph.2009.06.002. Epub 2009 Jun 27.
9
Effect of inverted faces as visual stimuli on the performance of the hybrid SSVEP + P300 brain computer interface.
Brain Res. 2024 Oct 15;1841:149092. doi: 10.1016/j.brainres.2024.149092. Epub 2024 Jun 17.

引用本文的文献

4
Performance Analysis With Different Types of Visual Stimuli in a BCI-Based Speller Under an RSVP Paradigm.
Front Comput Neurosci. 2021 Jan 5;14:587702. doi: 10.3389/fncom.2020.587702. eCollection 2020.
5
Spatial and Time Domain Feature of ERP Speller System Extracted via Convolutional Neural Network.
Comput Intell Neurosci. 2018 May 15;2018:6058065. doi: 10.1155/2018/6058065. eCollection 2018.

本文引用的文献

1
The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications.
PLoS One. 2014 Dec 3;9(12):e112392. doi: 10.1371/journal.pone.0112392. eCollection 2014.
2
Channel selection methods for the P300 Speller.
J Neurosci Methods. 2014 Jul 30;232:6-15. doi: 10.1016/j.jneumeth.2014.04.009. Epub 2014 May 2.
3
Face stimuli effectively prevent brain-computer interface inefficiency in patients with neurodegenerative disease.
Clin Neurophysiol. 2013 May;124(5):893-900. doi: 10.1016/j.clinph.2012.11.006. Epub 2012 Dec 14.
4
Flashing characters with famous faces improves ERP-based brain-computer interface performance.
J Neural Eng. 2011 Oct;8(5):056016. doi: 10.1088/1741-2560/8/5/056016. Epub 2011 Sep 20.
5
Predictive spelling with a P300-based brain-computer interface: Increasing the rate of communication.
Int J Hum Comput Interact. 2011 Jan 1;27(1):69-84. doi: 10.1080/10447318.2011.535754.
6
Operation of a P300-based brain-computer interface by individuals with cervical spinal cord injury.
Clin Neurophysiol. 2011 May;122(5):991-6. doi: 10.1016/j.clinph.2010.08.021. Epub 2010 Sep 28.
7
A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns.
Clin Neurophysiol. 2010 Jul;121(7):1109-20. doi: 10.1016/j.clinph.2010.01.030. Epub 2010 Mar 26.
8
Visual stimuli for the P300 brain-computer interface: a comparison of white/gray and green/blue flicker matrices.
Clin Neurophysiol. 2009 Aug;120(8):1562-6. doi: 10.1016/j.clinph.2009.06.002. Epub 2009 Jun 27.
9
Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque.
J Neurosci. 2008 Jan 30;28(5):1131-9. doi: 10.1523/JNEUROSCI.4682-07.2008.
10
Toward enhanced P300 speller performance.
J Neurosci Methods. 2008 Jan 15;167(1):15-21. doi: 10.1016/j.jneumeth.2007.07.017. Epub 2007 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验