Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland.
Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45117 Essen, Germany.
J Chem Phys. 2017 Aug 28;147(8):084106. doi: 10.1063/1.4986291.
We propose a physically motivated decomposition of density functional theory (DFT) 3-body nonadditive interaction energies into the exchange and density-deformation (polarization) components. The exchange component represents the effect of the Pauli exclusion in the wave function of the trimer and is found to be challenging for density functional approximations (DFAs). The remaining density-deformation nonadditivity is less dependent upon the DFAs. Numerical demonstration is carried out for rare gas atom trimers, Ar-HX (X = F, Cl) complexes, and small hydrogen-bonded and van der Waals molecular systems. None of the tested semilocal, hybrid, and range-separated DFAs properly accounts for the nonadditive exchange in dispersion-bonded trimers. By contrast, for hydrogen-bonded systems, range-separated DFAs achieve a qualitative agreement to within 20% of the reference exchange energy. A reliable performance for all systems is obtained only when the monomers interact through the Hartree-Fock potential in the dispersion-free Pauli blockade scheme. Additionally, we identify the nonadditive second-order exchange-dispersion energy as an important but overlooked contribution in force-field-like dispersion corrections. Our results suggest that range-separated functionals do not include this component, although semilocal and global hybrid DFAs appear to imitate it in the short range.
我们提出了一种物理启发的方法,将密度泛函理论(DFT)三体非加和相互作用能分解为交换和密度变形(极化)分量。交换分量代表了波函数中 Pauli 排斥对三聚体的影响,对于密度泛函近似(DFA)来说是具有挑战性的。剩余的密度变形非加和性对 DFA 的依赖性较小。我们对稀有气体原子三聚体、Ar-HX(X=F,Cl)复合物以及小的氢键和范德华分子体系进行了数值演示。所测试的半局部、混合和范围分离的 DFA 都没有正确考虑到色散键三聚体中的非加和交换。相比之下,对于氢键体系,范围分离的 DFA 可以在参考交换能的 20%以内实现定性一致。只有当单体通过无弥散的 Pauli 阻塞方案中的 Hartree-Fock 势相互作用时,才能在所有体系中获得可靠的性能。此外,我们确定非加和的二阶交换弥散能是力场样弥散修正中一个重要但被忽视的贡献。我们的结果表明,范围分离的泛函不包括这一部分,尽管半局部和全局混合 DFA 在短程范围内似乎模仿了它。