Suppr超能文献

基于知识的放射治疗计划中的异常值识别:盆腔病例研究。

Outlier identification in radiation therapy knowledge-based planning: A study of pelvic cases.

机构信息

Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA.

Medical Physics Graduate Program, Duke University, Durham, NC, 27705, USA.

出版信息

Med Phys. 2017 Nov;44(11):5617-5626. doi: 10.1002/mp.12556. Epub 2017 Sep 30.

Abstract

PURPOSE

The purpose of this study was to apply statistical metrics to identify outliers and to investigate the impact of outliers on knowledge-based planning in radiation therapy of pelvic cases. We also aimed to develop a systematic workflow for identifying and analyzing geometric and dosimetric outliers.

METHODS

Four groups (G1-G4) of pelvic plans were sampled in this study. These include the following three groups of clinical IMRT cases: G1 (37 prostate cases), G2 (37 prostate plus lymph node cases) and G3 (37 prostate bed cases). Cases in G4 were planned in accordance with dynamic-arc radiation therapy procedure and include 10 prostate cases in addition to those from G1. The workflow was separated into two parts: 1. identifying geometric outliers, assessing outlier impact, and outlier cleaning; 2. identifying dosimetric outliers, assessing outlier impact, and outlier cleaning. G2 and G3 were used to analyze the effects of geometric outliers (first experiment outlined below) while G1 and G4 were used to analyze the effects of dosimetric outliers (second experiment outlined below). A baseline model was trained by regarding all G2 cases as inliers. G3 cases were then individually added to the baseline model as geometric outliers. The impact on the model was assessed by comparing leverages of inliers (G2) and outliers (G3). A receiver-operating-characteristic (ROC) analysis was performed to determine the optimal threshold. The experiment was repeated by training the baseline model with all G3 cases as inliers and perturbing the model with G2 cases as outliers. A separate baseline model was trained with 32 G1 cases. Each G4 case (dosimetric outlier) was subsequently added to perturb the model. Predictions of dose-volume histograms (DVHs) were made using these perturbed models for the remaining 5 G1 cases. A Weighted Sum of Absolute Residuals (WSAR) was used to evaluate the impact of the dosimetric outliers.

RESULTS

The leverage of inliers and outliers was significantly different. The Area-Under-Curve (AUC) for differentiating G2 (outliers) from G3 (inliers) was 0.98 (threshold: 0.27) for the bladder and 0.81 (threshold: 0.11) for the rectum. For differentiating G3 (outlier) from G2 (inlier), the AUC (threshold) was 0.86 (0.11) for the bladder and 0.71 (0.11) for the rectum. Significant increase in WSAR was observed in the model with 3 dosimetric outliers for the bladder (P < 0.005 with Bonferroni correction), and in the model with only 1 dosimetric outlier for the rectum (P < 0.005).

CONCLUSIONS

We established a systematic workflow for identifying and analyzing geometric and dosimetric outliers, and investigated statistical metrics for outlier detection. Results validated the necessity for outlier detection and clean-up to enhance model quality in clinical practice.

摘要

目的

本研究旨在应用统计指标识别离群值,并探讨离群值对盆腔病例放射治疗中基于知识的计划的影响。我们还旨在开发一种系统的工作流程,用于识别和分析几何和剂量学离群值。

方法

本研究中对四组盆腔计划(G1-G4)进行了采样。这些包括以下三组临床调强放疗病例:G1(37 例前列腺病例)、G2(37 例前列腺加淋巴结病例)和 G3(37 例前列腺床病例)。G4 中的病例是按照动态弧形放射治疗程序计划的,除了 G1 中的病例外,还包括 10 例前列腺病例。该工作流程分为两部分:1. 识别几何离群值,评估离群值的影响,并清理离群值;2. 识别剂量学离群值,评估离群值的影响,并清理离群值。G2 和 G3 用于分析几何离群值的影响(下面概述的第一个实验),而 G1 和 G4 用于分析剂量学离群值的影响(下面概述的第二个实验)。通过将所有 G2 病例视为内群来训练基线模型。然后,将 G3 病例逐个添加到基线模型中作为几何离群值。通过比较内群(G2)和离群值(G3)的杠杆来评估模型的影响。进行了接收者操作特征(ROC)分析以确定最佳阈值。通过将所有 G3 病例作为内群训练基线模型,并将 G2 病例作为离群值来扰动模型,重复了该实验。使用 32 个 G1 病例训练了单独的基线模型。随后将每个 G4 病例(剂量学离群值)添加到模型中以进行扰动。使用这些扰动模型为其余 5 个 G1 病例制作剂量-体积直方图(DVH)的预测。使用加权绝对残差和(WSAR)来评估剂量学离群值的影响。

结果

内群和离群值的杠杆明显不同。区分 G2(离群值)和 G3(内群)的曲线下面积(AUC)分别为膀胱的 0.98(阈值:0.27)和直肠的 0.81(阈值:0.11)。区分 G3(离群值)和 G2(内群)的 AUC(阈值)分别为膀胱的 0.86(0.11)和直肠的 0.71(0.11)。在膀胱的模型中,观察到 3 个剂量学离群值时 WSAR 显著增加(经 Bonferroni 校正,P<0.005),在直肠的模型中,仅 1 个剂量学离群值时 WSAR 显著增加(P<0.005)。

结论

我们建立了一种系统的工作流程,用于识别和分析几何和剂量学离群值,并研究了用于离群值检测的统计指标。结果验证了在临床实践中进行离群值检测和清理以提高模型质量的必要性。

相似文献

引用本文的文献

4
Artificial Intelligence in Radiation Therapy.放射治疗中的人工智能
IEEE Trans Radiat Plasma Med Sci. 2022 Feb;6(2):158-181. doi: 10.1109/TRPMS.2021.3107454. Epub 2021 Aug 24.
6
Data-Driven Dose-Volume Histogram Prediction.数据驱动的剂量体积直方图预测
Adv Radiat Oncol. 2021 Oct 27;7(2):100841. doi: 10.1016/j.adro.2021.100841. eCollection 2022 Mar-Apr.

本文引用的文献

5
Atlas-guided prostate intensity modulated radiation therapy (IMRT) planning.基于图谱引导的前列腺调强放射治疗(IMRT)计划
Phys Med Biol. 2015 Sep 21;60(18):7277-91. doi: 10.1088/0031-9155/60/18/7277. Epub 2015 Sep 8.
7
Evaluation of a knowledge-based planning solution for head and neck cancer.头颈部癌基于知识的治疗计划解决方案评估
Int J Radiat Oncol Biol Phys. 2015 Mar 1;91(3):612-20. doi: 10.1016/j.ijrobp.2014.11.014. Epub 2015 Jan 30.
8
Standardized beam bouquets for lung IMRT planning.用于肺部调强放疗计划的标准化射束集束。
Phys Med Biol. 2015 Mar 7;60(5):1831-43. doi: 10.1088/0031-9155/60/5/1831. Epub 2015 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验