Sorbonne Universités, UPMC Université Paris 06 , CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP) UMR 7574, 4 Place Jussieu, 75252 Paris Cedex 05, France.
Bruker France , 34, rue de l'Industrie, 67166 Wissembourg, France.
Anal Chem. 2017 Oct 3;89(19):10201-10207. doi: 10.1021/acs.analchem.7b01332. Epub 2017 Sep 21.
We demonstrate that NMR/DNP (Dynamic Nuclear Polarization) allows an unprecedented description of carbonate substituted hydroxyapatite (CHAp). Key structural questions related to order/disorder and clustering of carbonates are tackled using distance sensitive DNP experiments using C-C recoupling. Such experiments are easily implemented due to unprecedented DNP gain (orders of magnitude). DNP is efficiently mediated by quasi one-dimensional spin diffusion through the hydroxyl columns present in the CHAp structure (thought of as "highways" for spin diffusion). For spherical nanoparticles and ϕ < 100 nm, it is numerically shown that spin diffusion allows their study as a whole. Most importantly, we demonstrate also that the DNP study at 100 K leads to data which are comparable to data obtained at room temperature (in terms of spin dynamics and line shape resolution). Finally, all 2D DNP experiments can be interpreted in terms of domains exhibiting well identified types of substitution: local order and carbonate clustering are clearly favored.
我们证明 NMR/DNP(动态核极化)可以对碳酸盐取代羟磷灰石(CHAp)进行前所未有的描述。使用 C-C 重耦的距离敏感 DNP 实验解决了与碳酸盐的有序/无序和聚集相关的关键结构问题。由于前所未有的 DNP 增益(数量级),此类实验很容易实现。DNP 通过在 CHAp 结构中存在的羟基柱(被认为是自旋扩散的“高速公路”)进行准一维自旋扩散有效地介导。对于球形纳米颗粒和 ϕ < 100nm,数值表明自旋扩散允许整体研究它们。最重要的是,我们还证明了在 100 K 下的 DNP 研究可以得到与在室温下获得的数据相当的(在自旋动力学和线形状分辨率方面)数据。最后,所有 2D DNP 实验都可以根据表现出明确类型取代的畴来解释:局部有序和碳酸盐聚集明显受到青睐。