Suppr超能文献

用于磁共振指纹识别的深度学习:一种从时间序列预测定量参数值的新方法。

Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series.

作者信息

Hoppe Elisabeth, Körzdörfer Gregor, Würfl Tobias, Wetzl Jens, Lugauer Felix, Pfeuffer Josef, Maier Andreas

机构信息

MR Application Development, Siemens Healthcare, Erlangen, Germany.

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

出版信息

Stud Health Technol Inform. 2017;243:202-206.

Abstract

The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitative parameter maps. Currently, the comparison is done by matching a dictionary of simulated signals to the acquired signals. To accelerate the computation of quantitative maps we train a Convolutional Neural Network (CNN) on simulated dictionary data. As a proof of principle we show that the neural network implicitly encodes the dictionary and can replace the matching process.

摘要

这项工作的目的是评估深度学习方法在磁共振指纹成像(MRF)中的应用。MRF是一种最近提出的用于生成定量参数图的测量技术。在MRF中,通过伪随机激发模式生成非稳态信号。将每个体素中的测量信号与物理模型进行比较,可得到定量参数图。目前,通过将模拟信号字典与采集到的信号进行匹配来完成比较。为了加速定量图的计算,我们在模拟字典数据上训练卷积神经网络(CNN)。作为原理验证,我们表明神经网络隐式地编码了字典,并且可以取代匹配过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验