Hoppe Elisabeth, Körzdörfer Gregor, Würfl Tobias, Wetzl Jens, Lugauer Felix, Pfeuffer Josef, Maier Andreas
MR Application Development, Siemens Healthcare, Erlangen, Germany.
Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Stud Health Technol Inform. 2017;243:202-206.
The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitative parameter maps. Currently, the comparison is done by matching a dictionary of simulated signals to the acquired signals. To accelerate the computation of quantitative maps we train a Convolutional Neural Network (CNN) on simulated dictionary data. As a proof of principle we show that the neural network implicitly encodes the dictionary and can replace the matching process.
这项工作的目的是评估深度学习方法在磁共振指纹成像(MRF)中的应用。MRF是一种最近提出的用于生成定量参数图的测量技术。在MRF中,通过伪随机激发模式生成非稳态信号。将每个体素中的测量信号与物理模型进行比较,可得到定量参数图。目前,通过将模拟信号字典与采集到的信号进行匹配来完成比较。为了加速定量图的计算,我们在模拟字典数据上训练卷积神经网络(CNN)。作为原理验证,我们表明神经网络隐式地编码了字典,并且可以取代匹配过程。