State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
Institute of Disaster Prevention Science and Technology, Sanhe, 065201, China.
Environ Sci Pollut Res Int. 2017 Nov;24(31):24284-24296. doi: 10.1007/s11356-017-0030-2. Epub 2017 Sep 9.
Simulation-optimization techniques are effective in identifying an optimal remediation strategy. Simulation models with uncertainty, primarily in the form of parameter uncertainty with different degrees of correlation, influence the reliability of the optimal remediation strategy. In this study, a coupled Monte Carlo simulation and Copula theory is proposed for uncertainty analysis of a simulation model when parameters are correlated. Using the self-adaptive weight particle swarm optimization Kriging method, a surrogate model was constructed to replace the simulation model and reduce the computational burden and time consumption resulting from repeated and multiple Monte Carlo simulations. The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) were employed to identify whether the t Copula function or the Gaussian Copula is the optimal Copula function to match the relevant structure of the parameters. The results show that both the AIC and BIC values of the t Copula function are less than those of the Gaussian Copula function. This indicates that the t Copula function is the optimal function for matching the relevant structure of the parameters. The outputs of the simulation model when parameter correlation was considered and when it was ignored were compared. The results show that the amplitude of the fluctuation interval when parameter correlation was considered is less than the corresponding amplitude when parameter estimation was ignored. Moreover, it was demonstrated that considering the correlation among parameters is essential for uncertainty analysis of a simulation model, and the results of uncertainty analysis should be incorporated into the remediation strategy optimization process.
模拟-优化技术在确定最佳修复策略方面非常有效。具有不确定性的模拟模型,主要以参数不确定性的形式存在,且具有不同程度的相关性,这会影响最佳修复策略的可靠性。在本研究中,提出了一种在参数相关时用于模拟模型不确定性分析的耦合蒙特卡罗模拟和 Copula 理论。使用自适应权重粒子群优化克里金方法构建了一个替代模型,以替代模拟模型,从而减少由于重复和多次蒙特卡罗模拟而导致的计算负担和时间消耗。采用 Akaike 信息准则(AIC)和贝叶斯信息准则(BIC)来确定 t Copula 函数或高斯 Copula 函数是否是匹配参数相关结构的最优 Copula 函数。结果表明,t Copula 函数的 AIC 和 BIC 值均小于高斯 Copula 函数的值。这表明 t Copula 函数是匹配参数相关结构的最优函数。比较了考虑参数相关性和忽略参数相关性时模拟模型的输出。结果表明,考虑参数相关性时的波动间隔幅度小于忽略参数估计时的相应幅度。此外,还证明了考虑参数之间的相关性对于模拟模型的不确定性分析至关重要,并且应该将不确定性分析的结果纳入修复策略优化过程中。