Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States.
Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States.
Nano Lett. 2017 Oct 11;17(10):5956-5961. doi: 10.1021/acs.nanolett.7b01876. Epub 2017 Sep 14.
Surface trap density in silicon nanowires (NWs) plays a key role in the performance of many semiconductor NW-based devices. We use pump-probe microscopy to characterize the surface recombination dynamics on a point-by-point basis in 301 silicon NWs grown using the vapor-liquid-solid (VLS) method. The surface recombination velocity (S), a metric of the surface quality that is directly proportional to trap density, is determined by the relationship S = d/4τ from measurements of the recombination lifetime (τ) and NW diameter (d) at distinct spatial locations in individual NWs. We find that S varies by as much as 2 orders of magnitude between NWs grown at the same time but varies only by a factor of 2 or three within an individual NW. Although we find that, as expected, smaller-diameter NWs exhibit shorter τ, we also find that smaller wires exhibit higher values of S; this indicates that τ is shorter both because of the geometrical effect of smaller d and because of a poorer quality surface. These results highlight the need to consider interwire heterogeneity as well as diameter-dependent surface effects when fabricating NW-based devices.
硅纳米线(NWs)中的表面陷阱密度对许多基于半导体 NW 的器件的性能起着关键作用。我们使用泵浦-探测显微镜对点进行逐点表征,以确定使用汽液固(VLS)方法生长的 301 根硅 NW 上的表面复合动力学。表面复合速率(S)是表面质量的度量标准,与陷阱密度成正比,通过在单个 NW 中的不同空间位置测量复合寿命(τ)和 NW 直径(d),可以从关系 S = d/4τ 中确定 S。我们发现,即使在同一时间生长的 NW 之间,S 也可能相差 2 个数量级,但在单个 NW 内,S 仅相差 2 或 3 倍。尽管我们发现,正如预期的那样,直径较小的 NW 具有较短的 τ,但我们也发现较小的线具有较高的 S 值;这表明 τ 较短不仅是由于 d 的几何效应,而且还由于表面质量较差。这些结果强调了在制造基于 NW 的器件时需要考虑线间异质性以及直径相关的表面效应。