Suppr超能文献

基于对象的IKONOS影像分类用于绘制城市地区大规模植被群落图

Object-Based Classification of Ikonos Imagery for Mapping Large-Scale Vegetation Communities in Urban Areas.

作者信息

Mathieu Renaud, Aryal Jagannath, Chong Albert K

机构信息

Spatial Ecology Research Facility, School of Surveying, University of Otago, PO Box 56, Dunedin, New Zealand.

Centre for Advanced Computational Solutions, Lincoln University, PO Box 84, Lincoln, New Zealand.

出版信息

Sensors (Basel). 2007 Nov 20;7(11):2860-2880. doi: 10.3390/s7112860.

Abstract

Effective assessment of biodiversity in cities requires detailed vegetation maps.To date, most remote sensing of urban vegetation has focused on thematically coarse landcover products. Detailed habitat maps are created by manual interpretation of aerialphotographs, but this is time consuming and costly at large scale. To address this issue, wetested the effectiveness of object-based classifications that use automated imagesegmentation to extract meaningful ground features from imagery. We applied thesetechniques to very high resolution multispectral Ikonos images to produce vegetationcommunity maps in Dunedin City, New Zealand. An Ikonos image was orthorectified and amulti-scale segmentation algorithm used to produce a hierarchical network of image objects.The upper level included four coarse strata: industrial/commercial (commercial buildings),residential (houses and backyard private gardens), vegetation (vegetation patches larger than0.8/1ha), and water. We focused on the vegetation stratum that was segmented at moredetailed level to extract and classify fifteen classes of vegetation communities. The firstclassification yielded a moderate overall classification accuracy (64%, κ = 0.52), which ledus to consider a simplified classification with ten vegetation classes. The overallclassification accuracy from the simplified classification was 77% with a κ value close tothe excellent range (κ = 0.74). These results compared favourably with similar studies inother environments. We conclude that this approach does not provide maps as detailed as those produced by manually interpreting aerial photographs, but it can still extract ecologically significant classes. It is an efficient way to generate accurate and detailed maps in significantly shorter time. The final map accuracy could be improved by integrating segmentation, automated and manual classification in the mapping process, especially when considering important vegetation classes with limited spectral contrast.

摘要

有效评估城市生物多样性需要详细的植被地图。迄今为止,大多数城市植被遥感都集中在主题较为粗略的土地覆盖产品上。详细的栖息地地图是通过人工解读航空照片创建的,但在大尺度上这既耗时又昂贵。为了解决这个问题,我们测试了基于对象的分类方法的有效性,该方法使用自动图像分割从图像中提取有意义的地面特征。我们将这些技术应用于高分辨率多光谱IKONOS图像,以生成新西兰达尼丁市的植被群落地图。对一幅IKONOS图像进行了正射校正,并使用多尺度分割算法生成了一个分层的图像对象网络。上层包括四个粗略的层次:工业/商业(商业建筑)、住宅(房屋和后院私人花园)、植被(面积大于0.8/1公顷的植被斑块)和水域。我们专注于在更详细层次上分割的植被层次,以提取和分类15种植被群落类别。第一次分类产生了中等的总体分类精度(64%,κ=0.52),这促使我们考虑使用10种植被类别的简化分类。简化分类的总体分类精度为77%,κ值接近优秀范围(κ=0.74)。这些结果与其他环境中的类似研究相比具有优势。我们得出结论,这种方法提供的地图不如通过人工解读航空照片生成的地图详细,但它仍然可以提取具有生态意义的类别。这是一种在显著更短的时间内生成准确详细地图的有效方法。通过在制图过程中整合分割、自动和人工分类,可以提高最终地图的精度,特别是在考虑光谱对比度有限的重要植被类别时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06bd/3965237/50a968368e7e/sensors-07-02860f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验