Suppr超能文献

人类肠道微生物组中 VI 型分泌系统的全景揭示了其在群落组成中的作用。

The Landscape of Type VI Secretion across Human Gut Microbiomes Reveals Its Role in Community Composition.

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.

Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA.

出版信息

Cell Host Microbe. 2017 Sep 13;22(3):411-419.e4. doi: 10.1016/j.chom.2017.08.010.

Abstract

Although gut microbiome composition is well defined, the mechanisms underlying community assembly remain poorly understood. Bacteroidales possess three genetic architectures (GA1-3) of the type VI secretion system (T6SS), an effector delivery pathway that mediates interbacterial competition. Here we define the distribution and role of GA1-3 in the human gut using metagenomic analysis. We find that adult microbiomes harbor limited effector and cognate immunity genes, suggesting selection for compatibility at the species (GA1 and GA2) and strain (GA3) levels. Bacteroides fragilis GA3 is known to mediate potent inter-strain competition, and we observe GA3 enrichment among strains colonizing infant microbiomes, suggesting competition early in life. Additionally, GA3 is associated with increased Bacteroides abundance, indicating that this system confers an advantage in Bacteroides-rich ecosystems. Collectively, these analyses uncover the prevalence of T6SS-dependent competition and reveal its potential role in shaping human gut microbial composition.

摘要

虽然肠道微生物群落的组成已经得到很好的定义,但群落组装的机制仍知之甚少。拟杆菌门拥有三种类型六型分泌系统(T6SS)的遗传结构(GA1-3),这是一种效应器传递途径,介导细菌间的竞争。在这里,我们使用宏基因组分析来定义 GA1-3 在人类肠道中的分布和作用。我们发现成人微生物组中含有有限的效应器和同源免疫基因,这表明在物种(GA1 和 GA2)和菌株(GA3)水平上存在相容性选择。已知脆弱拟杆菌 GA3 介导强烈的菌株间竞争,我们观察到 GA3 在定植于婴儿微生物组的菌株中富集,这表明在生命早期就存在竞争。此外,GA3 与拟杆菌属丰度的增加有关,表明该系统在富含拟杆菌的生态系统中具有优势。总的来说,这些分析揭示了 T6SS 依赖性竞争的普遍性,并揭示了其在塑造人类肠道微生物组成中的潜在作用。

相似文献

1
The Landscape of Type VI Secretion across Human Gut Microbiomes Reveals Its Role in Community Composition.
Cell Host Microbe. 2017 Sep 13;22(3):411-419.e4. doi: 10.1016/j.chom.2017.08.010.
2
Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3627-32. doi: 10.1073/pnas.1522510113. Epub 2016 Mar 7.
4
Type VI Secretion Systems and the Gut Microbiota.
Microbiol Spectr. 2019 Mar;7(2). doi: 10.1128/microbiolspec.PSIB-0009-2018.
5
Analysis of Effector and Immunity Proteins of the GA2 Type VI Secretion Systems of Gut Bacteroidales.
J Bacteriol. 2022 Jul 19;204(7):e0012222. doi: 10.1128/jb.00122-22. Epub 2022 Jun 23.
10
Human gut bacteria contain acquired interbacterial defence systems.
Nature. 2019 Nov;575(7781):224-228. doi: 10.1038/s41586-019-1708-z. Epub 2019 Oct 30.

引用本文的文献

3
Intraspecies warfare restricts strain coexistence in human skin microbiomes.
Nat Microbiol. 2025 Jul;10(7):1581-1592. doi: 10.1038/s41564-025-02041-4. Epub 2025 Jun 30.
4
An interbacterial cysteine protease toxin inhibits cell growth by targeting type II DNA topoisomerases GyrB and ParE.
PLoS Biol. 2025 May 27;23(5):e3003208. doi: 10.1371/journal.pbio.3003208. eCollection 2025 May.
5
Mobile genetic elements: the hidden puppet masters underlying infant gut microbiome assembly?
Microbiome Res Rep. 2024 Nov 9;4(1):7. doi: 10.20517/mrr.2024.51. eCollection 2025.
6
Interbacterial warfare in the human gut: insights from Bacteroidales' perspective.
Gut Microbes. 2025 Dec;17(1):2473522. doi: 10.1080/19490976.2025.2473522. Epub 2025 Mar 4.
7
Proteogenomic annotation of T6SS components identified in secretome.
Front Microbiol. 2025 Feb 11;16:1495971. doi: 10.3389/fmicb.2025.1495971. eCollection 2025.
8
A human gut bacterium antagonizes neighboring bacteria by altering their protein-folding ability.
Cell Host Microbe. 2025 Feb 12;33(2):200-217.e24. doi: 10.1016/j.chom.2025.01.008. Epub 2025 Feb 4.
9
Gut microbiota strain richness is species specific and affects engraftment.
Nature. 2025 Jan;637(8045):422-429. doi: 10.1038/s41586-024-08242-x. Epub 2024 Nov 27.
10
Microbiota-derived small molecule genotoxins: host interactions and ecological impact in the gut ecosystem.
Gut Microbes. 2024 Jan-Dec;16(1):2430423. doi: 10.1080/19490976.2024.2430423. Epub 2024 Nov 18.

本文引用的文献

2
Shigella sonnei Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy.
Cell Host Microbe. 2017 Jun 14;21(6):769-776.e3. doi: 10.1016/j.chom.2017.05.004.
3
Tunable Expression Tools Enable Single-Cell Strain Distinction in the Gut Microbiome.
Cell. 2017 Apr 20;169(3):538-546.e12. doi: 10.1016/j.cell.2017.03.041.
4
An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography.
Genome Res. 2016 Nov;26(11):1612-1625. doi: 10.1101/gr.201863.115. Epub 2016 Oct 18.
5
Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E5044-51. doi: 10.1073/pnas.1608858113. Epub 2016 Aug 8.
6
Strain competition restricts colonization of an enteric pathogen and prevents colitis.
EMBO Rep. 2016 Sep;17(9):1281-91. doi: 10.15252/embr.201642282. Epub 2016 Jul 18.
8
Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans.
Cell. 2016 May 5;165(4):842-53. doi: 10.1016/j.cell.2016.04.007. Epub 2016 Apr 28.
9
The evolution of cooperation within the gut microbiota.
Nature. 2016 May 12;533(7602):255-9. doi: 10.1038/nature17626. Epub 2016 Apr 25.
10
Human symbionts inject and neutralize antibacterial toxins to persist in the gut.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3639-44. doi: 10.1073/pnas.1525637113. Epub 2016 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验