Suppr超能文献

稳态同位素效应与酶中间产物浓度及净速率常数之间关系的理论与应用

Theory and Application of the Relationship Between Steady-State Isotope Effects on Enzyme Intermediate Concentrations and Net Rate Constants.

作者信息

Ruszczycky Mark W, Liu Hung-Wen

机构信息

University of Texas at Austin, Austin, TX, United States.

University of Texas at Austin, Austin, TX, United States.

出版信息

Methods Enzymol. 2017;596:459-499. doi: 10.1016/bs.mie.2017.07.022. Epub 2017 Aug 31.

Abstract

Steady-state kinetic isotope effects on enzyme-catalyzed reactions are often interpreted in terms of the microscopic rate constants associated with the elementary reactions of interest. Unfortunately, this approach can lead to confusion, especially when more than one elementary reaction is isotopically sensitive, because it forces one to consider the full catalytic cycle one step at a time rather than as a complete whole. Herein we argue that shifting focus from intrinsic effects to net rate constants and enzyme intermediate concentrations provides a more natural and holistic interpretation by which the effects of partial rate limitation are more easily understood. In doing so, we demonstrate how the experimental determination of isotope effects on enzyme intermediate concentrations allows a direct determination of isotope effects on net rate constants. The chapter is divided into three main sections. The first outlines the basic theory and its interpretation. The second discusses an application of the theory in the study of the radical SAM enzyme DesII. The final section then provides the complete mathematical treatment.

摘要

稳态动力学同位素效应在酶催化反应中常常依据与相关基元反应相联系的微观速率常数来解释。不幸的是,这种方法可能会导致混淆,特别是当不止一个基元反应对同位素敏感时,因为它迫使人们一次一步地考虑整个催化循环,而不是将其视为一个完整的整体。在此我们认为,将关注点从内在效应转移到净速率常数和酶中间体浓度上,能提供一种更自然和全面的解释,通过这种解释,部分速率限制的效应能更容易理解。在此过程中,我们展示了如何通过对酶中间体浓度的同位素效应进行实验测定,直接确定对净速率常数的同位素效应。本章分为三个主要部分。第一部分概述基本理论及其解释。第二部分讨论该理论在自由基SAM酶DesII研究中的应用。最后一部分给出完整的数学处理。

相似文献

2
EPR-kinetic isotope effect study of the mechanism of radical-mediated dehydrogenation of an alcohol by the radical SAM enzyme DesII.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2088-93. doi: 10.1073/pnas.1209446110. Epub 2013 Jan 17.
3
Kinetic Solvent Viscosity Effects as Probes for Studying the Mechanisms of Enzyme Action.
Biochemistry. 2018 Jun 26;57(25):3445-3453. doi: 10.1021/acs.biochem.8b00232. Epub 2018 Jun 13.
4
Interpretation of V/K isotope effects for enzymatic reactions exhibiting multiple isotopically sensitive steps.
J Theor Biol. 2006 Dec 7;243(3):328-42. doi: 10.1016/j.jtbi.2006.06.022. Epub 2006 Jun 30.
5
Kinetic Deuterium Isotope Effects in Cytochrome P450 Reactions.
Methods Enzymol. 2017;596:217-238. doi: 10.1016/bs.mie.2017.06.036. Epub 2017 Jul 18.
7
Measurement and Prediction of Chlorine Kinetic Isotope Effects in Enzymatic Systems.
Methods Enzymol. 2017;596:179-215. doi: 10.1016/bs.mie.2017.07.021. Epub 2017 Aug 23.
9
Measurement of Kinetic Isotope Effects in an Enzyme-Catalyzed Reaction by Continuous-Flow Mass Spectrometry.
Methods Enzymol. 2017;596:149-161. doi: 10.1016/bs.mie.2017.07.001. Epub 2017 Aug 4.
10
Kinetic isotope effects as probes of the mechanism of galactose oxidase.
Biochemistry. 1998 Jun 9;37(23):8426-36. doi: 10.1021/bi980328t.

引用本文的文献

1
Apparent Kinetic Isotope Effects for Multi-Step Steady-State Reactions.
J Phys Chem B. 2025 Apr 10;129(14):3604-3609. doi: 10.1021/acs.jpcb.5c00561. Epub 2025 Mar 27.
2
Distinguishing Concerted versus Stepwise Mechanisms Using Isotope Effects on Isotope Effects.
Biochemistry. 2021 Nov 23;60(46):3416-3418. doi: 10.1021/acs.biochem.1c00325. Epub 2021 Jun 7.
3
Measurement of Net Rate Constants from Enzyme Progress Curves without Curve Fitting.
Biochemistry. 2019 Dec 10;58(49):4950-4956. doi: 10.1021/acs.biochem.9b00762. Epub 2019 Nov 22.

本文引用的文献

1
O-H Activation by an Unexpected Ferryl Intermediate during Catalysis by 2-Hydroxyethylphosphonate Dioxygenase.
J Am Chem Soc. 2017 Feb 8;139(5):2045-2052. doi: 10.1021/jacs.6b12147. Epub 2017 Jan 31.
2
Mechanistic Enzymology of the Radical SAM Enzyme DesII.
Isr J Chem. 2015 Apr;55(3-4):315-324. doi: 10.1002/ijch.201400130. Epub 2015 Feb 20.
3
Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus nidulans Isopenicillin N Synthase.
J Am Chem Soc. 2016 Jul 20;138(28):8862-74. doi: 10.1021/jacs.6b04065. Epub 2016 Jul 5.
4
Radical S-Adenosylmethionine Enzymes in Human Health and Disease.
Annu Rev Biochem. 2016 Jun 2;85:485-514. doi: 10.1146/annurev-biochem-060713-035504. Epub 2016 May 4.
6
Mechanistic studies of the radical S-adenosylmethionine enzyme DesII with TDP-D-fucose.
Angew Chem Int Ed Engl. 2015 Jan 12;54(3):860-3. doi: 10.1002/anie.201409540. Epub 2014 Nov 21.
7
Radical S-adenosylmethionine enzymes.
Chem Rev. 2014 Apr 23;114(8):4229-317. doi: 10.1021/cr4004709. Epub 2014 Jan 29.
8
Travels with carbon-centered radicals. 5'-deoxyadenosine and 5'-deoxyadenosine-5'-yl in radical enzymology.
Acc Chem Res. 2014 Feb 18;47(2):540-9. doi: 10.1021/ar400194k. Epub 2013 Dec 5.
9
EPR-kinetic isotope effect study of the mechanism of radical-mediated dehydrogenation of an alcohol by the radical SAM enzyme DesII.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2088-93. doi: 10.1073/pnas.1209446110. Epub 2013 Jan 17.
10
Radical SAM enzymes in the biosynthesis of sugar-containing natural products.
Biochim Biophys Acta. 2012 Nov;1824(11):1231-44. doi: 10.1016/j.bbapap.2011.11.006. Epub 2011 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验