Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, 134 Research Park Dr, Columbia, MO 65211, United States.
Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, 134 Research Park Dr, Columbia, MO 65211, United States.
J Mol Cell Cardiol. 2017 Nov;112:83-90. doi: 10.1016/j.yjmcc.2017.09.003. Epub 2017 Sep 11.
Noonan Syndrome with Multiple Lentigines (NSML) is associated with congenital heart disease in form of pulmonary valve stenosis and hypertrophic cardiomyopathy (HCM). Genetically, NSML is primarily caused by mutations in the non-receptor protein tyrosine phosphatase SHP2. Importantly, certain SHP2 mutations such as Q510E can cause a particularly severe form of HCM with heart failure in infancy. Due to lack of insight into the underlying pathomechanisms, an effective custom-tailored therapy to prevent heart failure in these patients has not yet been found. SHP2 regulates numerous signaling cascades governing cell growth, differentiation, and survival. Experimental models have shown that NSML mutations in SHP2 cause dysregulation of downstream signaling, in particular involving the protein kinase AKT. AKT, and especially the isoform AKT1, has been shown to be a major regulator of cardiac hypertrophy. We therefore hypothesized that hyperactivation of AKT1 is required for the development of Q510E-SHP2-induced HCM. We previously generated a transgenic mouse model of NSML-associated HCM induced by Q510E-SHP2 expression in cardiomyocytes starting before birth. Mice display neonatal-onset HCM with initially preserved contractile function followed by functional decline around 2months of age. As a proof-of-principle study, our current goal was to establish to which extent a genetic reduction in AKT1 rescues the Q510E-SHP2-induced cardiac phenotype in vivo. AKT1 deletion mice were crossed with Q510E-SHP2 transgenic mice and the resulting compound mutant offspring analyzed. Homozygous deletion of AKT1 greatly reduced viability in our NSML mouse model, whereas heterozygous deletion of AKT1 in combination with Q510E-SHP2 expression was well tolerated. Despite normalization of pro-hypertrophic signaling downstream of AKT, heterozygous deletion of AKT1 did not ameliorate cardiac hypertrophy induced by Q510E-SHP2. However, the functional decline caused by Q510E-SHP2 expression was effectively prevented by reducing AKT1 protein. This demonstrates that AKT1 plays an important role in the underlying pathomechanism. Furthermore, the functional rescue was associated with an increase in the capillary-to-cardiomyocyte ratio and normalization of capillary density per tissue area in the compound mutant offspring. We therefore speculate that limited oxygen supply to the hypertrophied cardiomyocytes may contribute to the functional decline observed in our mouse model of NSML-associated HCM.
努南综合征伴多发性黑子(NSML)与肺动脉瓣狭窄和肥厚型心肌病(HCM)等先天性心脏病有关。从遗传学角度来看,NSML 主要由非受体蛋白酪氨酸磷酸酶 SHP2 的突变引起。重要的是,某些 SHP2 突变,如 Q510E,可导致婴儿期心力衰竭的特别严重形式的 HCM。由于缺乏对潜在病理机制的深入了解,尚未找到针对这些患者预防心力衰竭的有效定制疗法。SHP2 调节了许多控制细胞生长、分化和存活的信号转导级联。实验模型表明,SHP2 中的 NSML 突变导致下游信号转导失调,特别是涉及蛋白激酶 AKT。AKT,尤其是 AKT1 同工型,已被证明是心肌肥厚的主要调节剂。因此,我们假设 AKT1 的过度激活是 Q510E-SHP2 诱导的 HCM 发展所必需的。我们之前在出生前就开始在心肌细胞中表达 Q510E-SHP2 诱导了一种与 NSML 相关的 HCM 的转基因小鼠模型。小鼠表现出新生儿期的 HCM,最初保留收缩功能,然后在 2 个月左右时功能下降。作为一项原理验证研究,我们当前的目标是确定 AKT1 的遗传减少在多大程度上可以挽救体内 Q510E-SHP2 诱导的心脏表型。AKT1 缺失小鼠与 Q510E-SHP2 转基因小鼠杂交,并分析由此产生的复合突变后代。AKT1 纯合缺失大大降低了我们的 NSML 小鼠模型的存活率,而 AKT1 杂合缺失与 Q510E-SHP2 表达相结合则可以很好地耐受。尽管 AKT 下游的促肥厚信号转导正常化,但 AKT1 的杂合缺失并未改善 Q510E-SHP2 诱导的心肌肥厚。然而,通过降低 AKT1 蛋白,可以有效地预防 Q510E-SHP2 表达引起的功能下降。这表明 AKT1 在潜在的病理机制中起着重要作用。此外,功能挽救与复合突变后代中毛细血管与心肌细胞比率的增加以及组织区域内毛细血管密度的正常化有关。因此,我们推测,对肥厚心肌细胞的供氧有限可能导致我们的 NSML 相关 HCM 小鼠模型中观察到的功能下降。