Suppr超能文献

使用经CRISPR修饰的人类干细胞类器官来研究癌症中突变特征的起源。

Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer.

作者信息

Drost Jarno, van Boxtel Ruben, Blokzijl Francis, Mizutani Tomohiro, Sasaki Nobuo, Sasselli Valentina, de Ligt Joep, Behjati Sam, Grolleman Judith E, van Wezel Tom, Nik-Zainal Serena, Kuiper Roland P, Cuppen Edwin, Clevers Hans

机构信息

Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, 3584CT Utrecht, Netherlands.

Cancer Genomics Netherlands, UMC Utrecht, 3584CX Utrecht, Netherlands.

出版信息

Science. 2017 Oct 13;358(6360):234-238. doi: 10.1126/science.aao3130. Epub 2017 Sep 14.

Abstract

Mutational processes underlie cancer initiation and progression. Signatures of these processes in cancer genomes may explain cancer etiology and could hold diagnostic and prognostic value. We developed a strategy that can be used to explore the origin of cancer-associated mutational signatures. We used CRISPR-Cas9 technology to delete key DNA repair genes in human colon organoids, followed by delayed subcloning and whole-genome sequencing. We found that mutation accumulation in organoids deficient in the mismatch repair gene is driven by replication errors and accurately models the mutation profiles observed in mismatch repair-deficient colorectal cancers. Application of this strategy to the cancer predisposition gene , which encodes a base excision repair protein, revealed a mutational footprint (signature 30) previously observed in a breast cancer cohort. We show that signature 30 can arise from germline mutations.

摘要

突变过程是癌症发生和发展的基础。癌症基因组中这些过程的特征可能解释癌症病因,并可能具有诊断和预后价值。我们开发了一种可用于探索癌症相关突变特征起源的策略。我们使用CRISPR-Cas9技术删除人类结肠类器官中的关键DNA修复基因,随后进行延迟亚克隆和全基因组测序。我们发现,错配修复基因缺陷的类器官中的突变积累是由复制错误驱动的,并准确模拟了错配修复缺陷型结直肠癌中观察到的突变谱。将该策略应用于编码碱基切除修复蛋白的癌症易感基因,揭示了先前在乳腺癌队列中观察到的一种突变足迹(特征30)。我们表明,特征30可能源于种系突变。

相似文献

1
Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer.
Science. 2017 Oct 13;358(6360):234-238. doi: 10.1126/science.aao3130. Epub 2017 Sep 14.
3
Mutational Signature Analysis Reveals NTHL1 Deficiency to Cause a Multi-tumor Phenotype.
Cancer Cell. 2019 Feb 11;35(2):256-266.e5. doi: 10.1016/j.ccell.2018.12.011.
5
Deficiency of nucleotide excision repair is associated with mutational signature observed in cancer.
Genome Res. 2019 Jul;29(7):1067-1077. doi: 10.1101/gr.246223.118. Epub 2019 Jun 20.
6
NTHL1 in genomic integrity, aging and cancer.
DNA Repair (Amst). 2020 Sep;93:102920. doi: 10.1016/j.dnarep.2020.102920.
7
Disruption of a -35 kb Enhancer Impairs CTCF Binding and Expression in Colorectal Cells.
Clin Cancer Res. 2018 Sep 15;24(18):4602-4611. doi: 10.1158/1078-0432.CCR-17-3678. Epub 2018 Jun 13.
8
The First Molecular Screening of MLH1 and MSH2 Genes in Moroccan Colorectal Cancer Patients Shows a Relatively High Mutational Prevalence.
Genet Test Mol Biomarkers. 2018 Aug;22(8):492-497. doi: 10.1089/gtmb.2018.0067. Epub 2018 Jul 25.
9
NTHL1 and MUTYH polyposis syndromes: two sides of the same coin?
J Pathol. 2018 Feb;244(2):135-142. doi: 10.1002/path.5002. Epub 2017 Dec 14.
10
Mutational signatures of DNA mismatch repair deficiency in and human cancers.
Genome Res. 2018 May;28(5):666-675. doi: 10.1101/gr.226845.117. Epub 2018 Apr 10.

引用本文的文献

1
Single-cell transcriptomic and genomic changes in the ageing human brain.
Nature. 2025 Sep 3. doi: 10.1038/s41586-025-09435-8.
3
Using FFPEsig to Remove Formalin-Induced Artifacts and Characterize Mutational Signatures in Cancer.
Methods Mol Biol. 2025;2932:125-136. doi: 10.1007/978-1-0716-4566-6_6.
4
Organoids in cancer therapies: a comprehensive review.
Front Bioeng Biotechnol. 2025 Jul 22;13:1607488. doi: 10.3389/fbioe.2025.1607488. eCollection 2025.
5
Organoids/organs-on-chips towards biomimetic human artificial skin.
Burns Trauma. 2025 May 3;13:tkaf029. doi: 10.1093/burnst/tkaf029. eCollection 2025.
10
Evaluation of potential of targeted sequencing through mutational signature simulation.
PLoS One. 2025 Jun 25;20(6):e0326071. doi: 10.1371/journal.pone.0326071. eCollection 2025.

本文引用的文献

1
A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer.
EBioMedicine. 2017 Jun;20:39-49. doi: 10.1016/j.ebiom.2017.04.022. Epub 2017 Apr 13.
2
Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.
Science. 2017 Mar 24;355(6331):1330-1334. doi: 10.1126/science.aaf9011.
3
HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures.
Nat Med. 2017 Apr;23(4):517-525. doi: 10.1038/nm.4292. Epub 2017 Mar 13.
4
Mutational signatures associated with tobacco smoking in human cancer.
Science. 2016 Nov 4;354(6312):618-622. doi: 10.1126/science.aag0299.
5
Tissue-specific mutation accumulation in human adult stem cells during life.
Nature. 2016 Oct 13;538(7624):260-264. doi: 10.1038/nature19768. Epub 2016 Oct 3.
6
Mutational signatures of ionizing radiation in second malignancies.
Nat Commun. 2016 Sep 12;7:12605. doi: 10.1038/ncomms12605.
7
Landscape of somatic mutations in 560 breast cancer whole-genome sequences.
Nature. 2016 Jun 2;534(7605):47-54. doi: 10.1038/nature17676. Epub 2016 May 2.
8
Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors.
Nat Genet. 2016 Jun;48(6):600-606. doi: 10.1038/ng.3557. Epub 2016 Apr 25.
9
Mutational Strand Asymmetries in Cancer Genomes Reveal Mechanisms of DNA Damage and Repair.
Cell. 2016 Jan 28;164(3):538-49. doi: 10.1016/j.cell.2015.12.050. Epub 2016 Jan 21.
10
DNA repair in species with extreme lifespan differences.
Aging (Albany NY). 2015 Dec;7(12):1171-84. doi: 10.18632/aging.100866.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验