Schiel Christoph, Lind Pedro G, Maass Philipp
Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, 49076, Osnabrück, Germany.
Sci Rep. 2017 Sep 14;7(1):11562. doi: 10.1038/s41598-017-11465-w.
A steadily increasing fraction of renewable energy sources for electricity production requires a better understanding of how stochastic power generation affects the stability of electricity grids. Here, we assess the resilience of an IEEE test grid against single transmission line overloads under wind power injection based on the dc power flow equations and a quasi-static grid response to wind fluctuations. Thereby we focus on the mutual influence of wind power generation at different nodes. We find that overload probabilities vary strongly between different pairs of nodes and become highly affected by spatial correlations of wind fluctuations. An unexpected behaviour is uncovered: for a large number of node pairs, increasing wind power injection at one node can increase the power threshold at the other node with respect to line overloads in the grid. We find that this seemingly paradoxical behaviour is related to the topological distance of the overloaded line from the shortest path connecting the wind nodes. In the considered test grid, it occurs for all node pairs, where the overloaded line belongs to the shortest path.
用于电力生产的可再生能源所占比例稳步增加,这就需要更好地理解随机发电如何影响电网的稳定性。在此,我们基于直流潮流方程和对风电波动的准静态电网响应,评估了一个IEEE测试电网在风电注入情况下抵御单条输电线路过载的能力。由此,我们关注不同节点处风力发电的相互影响。我们发现,不同节点对之间的过载概率差异很大,并且受到风电波动空间相关性的显著影响。我们发现了一种意外行为:对于大量节点对,在一个节点增加风电注入会相对于电网中的线路过载提高另一个节点的功率阈值。我们发现这种看似矛盾的行为与过载线路到连接风电场节点的最短路径的拓扑距离有关。在所考虑的测试电网中,对于所有过载线路属于最短路径的节点对都会出现这种情况。