Suppr超能文献

碳 - 硫化学键的结构特征:一个半实验视角

Structural features of the carbon-sulfur chemical bond: a semi-experimental perspective.

作者信息

Penocchio Emanuele, Mendolicchio Marco, Tasinato Nicola, Barone Vincenzo

机构信息

Scuola Normale Superiore, Pisa, Italy.

出版信息

Can J Chem. 2016 Dec;94(12):1065-1076. doi: 10.1139/cjc-2016-0282. Epub 2016 Jul 28.

Abstract

In this work semi-experimental and theoretical equilibrium geometries of 10 sulfur-containing organic molecules, as well as 4 oxygenated ones, are determined by means of a computational protocol based on density functional theory. The results collected in the present paper further enhance our online database of accurate semi-experimental equilibrium molecular geometries, adding 13 new molecules containing up to 8 atoms, for 12 of which the first semi-experimental equilibrium structure is reported, to the best of our knowledge. We focus in particular on sulfur-containing compounds, aiming both to provide new accurate data on some rather important chemical moieties, only marginally represented in the literature of the field, and to examine the structural features of carbon-sulfur bonds in the light of the previously presented linear regression approach. The structural changes issuing from substitution of oxygen by sulfur are discussed to get deeper insights on how modifications in electronic structure and nuclear potential can affect equilibrium geometries. With respect to our previous works, we perform non-linear constrained optimizations of equilibrium SE structures with a new general and user-friendly software under development in our group with updated definition of useful statistical indicators.

摘要

在这项工作中,通过基于密度泛函理论的计算方法,确定了10个含硫有机分子以及4个含氧化合物的半实验和理论平衡几何结构。本文收集的结果进一步扩充了我们精确的半实验平衡分子几何结构在线数据库,据我们所知,新增了13个含原子数高达8的新分子,其中12个首次报道了半实验平衡结构。我们特别关注含硫化合物,旨在为该领域文献中仅有少量报道的一些相当重要的化学基团提供新的精确数据,并根据先前提出的线性回归方法研究碳硫键的结构特征。讨论了硫取代氧所引起的结构变化,以便更深入地了解电子结构和核势的改变如何影响平衡几何结构。与我们之前的工作相比,我们使用本团队正在开发的一款新的通用且用户友好的软件,对平衡SE结构进行非线性约束优化,并更新了有用统计指标的定义。

相似文献

1
Structural features of the carbon-sulfur chemical bond: a semi-experimental perspective.
Can J Chem. 2016 Dec;94(12):1065-1076. doi: 10.1139/cjc-2016-0282. Epub 2016 Jul 28.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.
5
Accurate Biomolecular Structures by the Nano-LEGO Approach: Pick the Bricks and Build Your Geometry.
J Chem Theory Comput. 2021 Nov 9;17(11):7290-7311. doi: 10.1021/acs.jctc.1c00788. Epub 2021 Oct 20.
6
Sulfur organic compounds in bottom sediments of the eastern Gulf of Finland.
Environ Sci Pollut Res Int. 2007 Sep;14(6):366-76. doi: 10.1065/espr2006.08.334.
8
Crystal structure prediction and isostructurality of three small organic halogen compounds.
Phys Chem Chem Phys. 2010 Aug 14;12(30):8571-9. doi: 10.1039/c003971c. Epub 2010 Jun 8.
9
Metal complexes containing allenylidene and higher cumulenylidene ligands: a theoretical perspective.
Acc Chem Res. 2012 Feb 21;45(2):139-49. doi: 10.1021/ar200009u. Epub 2011 Sep 7.
10
The Prodigious Hydrogen Bonds with Sulfur and Selenium in Molecular Assemblies, Structural Biology, and Functional Materials.
Acc Chem Res. 2020 Aug 18;53(8):1580-1592. doi: 10.1021/acs.accounts.0c00289. Epub 2020 Jul 17.

引用本文的文献

1
Toward Spectroscopic Accuracy for the Structures of Large Molecules at DFT Cost: Refinement and Extension of the Nano-LEGO Approach.
J Phys Chem A. 2023 Jun 22;127(24):5183-5192. doi: 10.1021/acs.jpca.3c01617. Epub 2023 Jun 7.
2
Accurate Quantum Chemical Spectroscopic Characterization of Glycolic Acid: A Route Toward its Astrophysical Detection.
J Phys Chem A. 2022 Apr 21;126(15):2373-2387. doi: 10.1021/acs.jpca.2c01419. Epub 2022 Apr 6.
4
Accurate Biomolecular Structures by the Nano-LEGO Approach: Pick the Bricks and Build Your Geometry.
J Chem Theory Comput. 2021 Nov 9;17(11):7290-7311. doi: 10.1021/acs.jctc.1c00788. Epub 2021 Oct 20.
5
Precise equilibrium structure of thiazole (c-CHNS) from twenty-four isotopologues.
J Chem Phys. 2021 Aug 7;155(5):054302. doi: 10.1063/5.0057221.
6
Unveiling Bifunctional Hydrogen Bonding with the Help of Quantum Chemistry: The Imidazole-Water Adduct as Test Case.
J Phys Chem A. 2021 Apr 15;125(14):2989-2998. doi: 10.1021/acs.jpca.1c01679. Epub 2021 Apr 5.
7
Isomerization and Fragmentation Reactions on the [CSH] Potential Energy Surface: The Metastable Thione -Methylide Isomer.
J Org Chem. 2021 Feb 5;86(3):2941-2956. doi: 10.1021/acs.joc.0c02835. Epub 2021 Jan 27.
9
VMS-ROT: A New Module of the Virtual Multifrequency Spectrometer for Simulation, Interpretation, and Fitting of Rotational Spectra.
J Chem Theory Comput. 2017 Sep 12;13(9):4382-4396. doi: 10.1021/acs.jctc.7b00533. Epub 2017 Aug 11.

本文引用的文献

1
Quadratic integrand double-hybrid made spin-component-scaled.
J Chem Phys. 2016 Mar 28;144(12):124104. doi: 10.1063/1.4944465.
2
Benchmarking Density Functionals on Structural Parameters of Small-/Medium-Sized Organic Molecules.
J Chem Theory Comput. 2016 Feb 9;12(2):459-65. doi: 10.1021/acs.jctc.5b01144. Epub 2016 Jan 11.
3
Density Functionals for Noncovalent Interaction Energies of Biological Importance.
J Chem Theory Comput. 2007 Jan;3(1):289-300. doi: 10.1021/ct6002719.
8
Semiexperimental equilibrium structures for building blocks of organic and biological molecules: the B2PLYP route.
J Chem Theory Comput. 2015 Oct 13;11(10):4689-707. doi: 10.1021/acs.jctc.5b00622. Epub 2015 Aug 31.
9
Disentangling the Puzzle of Hydrogen Bonding in Vitamin C.
J Phys Chem Lett. 2013 Jan 3;4(1):65-9. doi: 10.1021/jz301947g. Epub 2012 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验