Coron Camille, Costa Manon, Leman Hélène, Smadi Charline
Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France.
Institut de Mathématiques de Toulouse. CNRS UMR 5219, Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 09, France.
J Math Biol. 2018 May;76(6):1421-1463. doi: 10.1007/s00285-017-1175-9. Epub 2017 Sep 15.
Mechanisms leading to speciation are a major focus in evolutionary biology. In this paper, we present and study a stochastic model of population where individuals, with type a or A, are equivalent from ecological, demographical and spatial points of view, and differ only by their mating preference: two individuals with the same genotype have a higher probability to mate and produce a viable offspring. The population is subdivided in several patches and individuals may migrate between them. We show that mating preferences by themselves, even if they are very small, are enough to entail reproductive isolation between patches, and we provide the time needed for this isolation to occur as a function of the carrying capacity. Our results rely on a fine study of the stochastic process and of its deterministic limit in large population, which is given by a system of coupled nonlinear differential equations. Besides, we propose several generalisations of our model, and prove that our findings are robust for those generalisations.
导致物种形成的机制是进化生物学的一个主要研究重点。在本文中,我们提出并研究了一个种群的随机模型,其中具有a型或A型的个体,从生态、人口统计学和空间角度来看是等效的,仅在交配偏好上有所不同:两个具有相同基因型的个体更有可能交配并产生可存活的后代。种群被细分为几个斑块,个体可以在它们之间迁移。我们表明,交配偏好本身,即使非常小,也足以导致斑块之间的生殖隔离,并且我们给出了这种隔离发生所需的时间作为承载能力的函数。我们的结果依赖于对随机过程及其在大种群中的确定性极限的精细研究,该极限由一个耦合非线性微分方程组给出。此外,我们提出了模型的几种推广,并证明我们的发现对于这些推广是稳健的。