Suppr超能文献

在不降低效率的情况下检测不依从性:纵横模型的简单扩展。

Detecting nonadherence without loss in efficiency: A simple extension of the crosswise model.

机构信息

Department of Psychology, University of Mannheim, Schloss EO 254, D-68131, Mannheim, Germany.

Department of Experimental Psychology, University of Duesseldorf, Duesseldorf, Germany.

出版信息

Behav Res Methods. 2018 Oct;50(5):1895-1905. doi: 10.3758/s13428-017-0957-8.

Abstract

In surveys concerning sensitive behavior or attitudes, respondents often do not answer truthfully, because of social desirability bias. To elicit more honest responding, the randomized-response (RR) technique aims at increasing perceived and actual anonymity by prompting respondents to answer with a randomly modified and thus uninformative response. In the crosswise model, as a particularly promising variant of the RR, this is achieved by adding a second, nonsensitive question and by prompting respondents to answer both questions jointly. Despite increased privacy protection and empirically higher prevalence estimates of socially undesirable behaviors, evidence also suggests that some respondents might still not adhere to the instructions, in turn leading to questionable results. Herein we propose an extension of the crosswise model (ECWM) that makes it possible to detect several types of response biases with adequate power in realistic sample sizes. Importantly, the ECWM allows for testing the validity of the model's assumptions without any loss in statistical efficiency. Finally, we provide an empirical example supporting the usefulness of the ECWM.

摘要

在涉及敏感行为或态度的调查中,由于社会赞许偏差,受访者往往不能如实回答。为了获得更诚实的回答,随机响应(RR)技术旨在通过提示受访者用随机修改的、因此无信息的响应来增加感知和实际的匿名性。在横向模型中,作为 RR 的一种特别有前途的变体,通过添加第二个非敏感问题并提示受访者联合回答两个问题来实现这一点。尽管隐私保护得到了加强,社会不可取行为的流行率估计也有所提高,但证据也表明,一些受访者可能仍然不遵守指示,从而导致结果值得怀疑。在此,我们提出了一种横向模型(ECWM)的扩展,该扩展可以在现实样本量下以足够的功效检测几种类型的反应偏差。重要的是,ECWM 允许在不损失统计效率的情况下测试模型假设的有效性。最后,我们提供了一个支持 ECWM 有用性的实证例子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验