Centre for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute (UNI), Faculté de Psychologie et Sciences de l'Éducation, Université Libre de Bruxelles, 1050 Brussels, Belgium;
Department of Psychology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10618-10623. doi: 10.1073/pnas.1710913114. Epub 2017 Sep 18.
Multistep decision making pervades daily life, but its underlying mechanisms remain obscure. We distinguish four prominent models of multistep decision making, namely serial stage, hierarchical evidence integration, hierarchical leaky competing accumulation (HLCA), and probabilistic evidence integration (PEI). To empirically disentangle these models, we design a two-step reward-based decision paradigm and implement it in a reaching task experiment. In a first step, participants choose between two potential upcoming choices, each associated with two rewards. In a second step, participants choose between the two rewards selected in the first step. Strikingly, as predicted by the HLCA and PEI models, the first-step decision dynamics were initially biased toward the choice representing the highest sum/mean before being redirected toward the choice representing the maximal reward (i.e., initial dip). Only HLCA and PEI predicted this initial dip, suggesting that first-step decision dynamics depend on additive integration of competing second-step choices. Our data suggest that potential future outcomes are progressively unraveled during multistep decision making.
多步骤决策普遍存在于日常生活中,但其潜在机制仍不清楚。我们区分了四种突出的多步骤决策模型,即串行阶段、分层证据整合、分层漏竞争积累(HLCA)和概率证据整合(PEI)。为了从经验上区分这些模型,我们设计了一个两步基于奖励的决策范式,并在一个伸展任务实验中实现了它。在第一步中,参与者在两个潜在的即将到来的选择之间进行选择,每个选择都与两个奖励相关联。在第二步中,参与者在第一步中选择的两个奖励之间进行选择。引人注目的是,正如 HLCA 和 PEI 模型所预测的那样,第一步的决策动态最初偏向于代表最高总和/平均值的选择,然后被重新引导到代表最大奖励的选择(即初始下降)。只有 HLCA 和 PEI 预测了这种初始下降,这表明第一步的决策动态取决于竞争第二步选择的可加整合。我们的数据表明,在多步骤决策过程中,潜在的未来结果逐渐被揭示出来。