Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA.
Sci Adv. 2017 Sep 13;3(9):e1700764. doi: 10.1126/sciadv.1700764. eCollection 2017 Sep.
Most of the anticancer drug candidates entering preclinical trials fail to be approved for clinical applications. The following are among the main causes of these failures: studying molecular mechanisms of cancer development, identifying therapeutic targets, and testing drug candidates using inappropriate tissue culture models, which do not recapitulate the native microenvironment where the cancer cells originate. It has become clear that three-dimensional (3D) cell cultures are more biologically and clinically relevant than 2D models. The spatial and mechanical conditions of 3D cultures enable the cancer cells to display heterogeneous growth, assume diverse phenotypes, express distinct gene and protein products, and attain metastatic potential and resistance to drugs that are reminiscent of tumors in humans. However, the current 3D culture systems using synthetic polymers or selected components of the extracellular matrix (ECM) are defective (particularly the biophysical and biochemical properties of the native ECM) and remain distant to optimally support the signaling cue-oriented cell survival and growth. We introduce a reconstitutable tissue matrix scaffold (TMS) system fabricated using native tissue ECM, with tissue-like architecture and resilience. The structural and compositional properties of TMS favor robust cell survival, proliferation, migration, and invasion in culture and vascularized tumor formation in animals. The combination of porous and hydrogel TMS allows compartmental culture of cancerous and stromal cells, which are distinguishable by biomarkers. The response of the cancer cells grown on TMS to drugs well reflects animal and clinical observations. TMS enables more biologically relevant studies and is suitable for preclinical drug screening.
大多数进入临床前试验的抗癌药物候选物都未能获得临床应用的批准。以下是导致这些失败的主要原因之一:研究癌症发展的分子机制,确定治疗靶点,以及使用不合适的组织培养模型测试候选药物,这些模型不能再现癌细胞起源的原始微环境。现在已经清楚的是,三维(3D)细胞培养比 2D 模型更具有生物学和临床相关性。3D 培养的空间和力学条件使癌细胞能够表现出异质生长、呈现不同的表型、表达不同的基因和蛋白质产物,并获得类似于人类肿瘤的转移潜力和耐药性。然而,目前使用合成聚合物或细胞外基质(ECM)的选定成分的 3D 培养系统存在缺陷(特别是天然 ECM 的生物物理和生化特性),并且仍然无法最佳地支持信号导向的细胞存活和生长。我们引入了一种可重构的组织基质支架(TMS)系统,该系统使用天然组织 ECM 制造,具有组织样的结构和弹性。TMS 的结构和组成特性有利于细胞在培养中的存活、增殖、迁移和侵袭,以及在动物中形成血管化肿瘤。多孔和水凝胶 TMS 的组合允许对癌细胞和基质细胞进行分区培养,这些细胞可以通过生物标志物来区分。在 TMS 上生长的癌细胞对药物的反应很好地反映了动物和临床观察。TMS 能够进行更具生物学相关性的研究,适合临床前药物筛选。