Suppr超能文献

果蝇飞行肌肉供氧水平变化时气管网络的发育可塑性和稳定性。

Developmental plasticity and stability in the tracheal networks supplying Drosophila flight muscle in response to rearing oxygen level.

机构信息

School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA.

School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; Department of Biology, Providence College, Providence, RI 02918, USA.

出版信息

J Insect Physiol. 2018 Apr;106(Pt 3):189-198. doi: 10.1016/j.jinsphys.2017.09.006. Epub 2017 Sep 18.

Abstract

While it is clear that the insect tracheal system can respond in a compensatory manner to both hypoxia and hyperoxia, there is substantial variation in how different parts of the system respond. However, the response of tracheal structures, from the tracheoles to the largest tracheal trunks, have not been studied within one species. In this study, we examined the effect of larval/pupal rearing in hypoxia, normoxia, and hyperoxia (10, 21 or 40kPa oxygen) on body size and the tracheal supply to the flight muscles of Drosophila melanogaster, using synchrotron radiation micro-computed tomography (SR-µCT) to assess flight muscle volumes and the major tracheal trunks, and confocal microscopy to assess the tracheoles. Hypoxic rearing decreased thorax length whereas hyperoxic-rearing decreased flight muscle volumes, suggestive of negative effects of both extremes. Tomography at the broad organismal scale revealed no evidence for enlargement of the major tracheae in response to lower rearing oxygen levels, although tracheal size scaled with muscle volume. However, using confocal imaging, we found a strong inverse relationship between tracheole density within the flight muscles and rearing oxygen level, and shorter tracheolar branch lengths in hypoxic-reared animals. Although prior studies of larger tracheae in other insects indicate that axial diffusing capacity should be constant with sequential generations of branching, this pattern was not found in the fine tracheolar networks, perhaps due to the increasing importance of radial diffusion in this regime. Overall, D. melanogaster responded to rearing oxygen level with compensatory morphological changes in the small tracheae and tracheoles, but retained stability in most of the other structural components of the tracheal supply to the flight muscles.

摘要

虽然昆虫气管系统显然可以对缺氧和高氧做出补偿性反应,但系统的不同部分的反应方式存在很大差异。然而,尚未在一个物种内研究气管结构(从气管到最大的气管主干)的反应。在这项研究中,我们使用同步辐射微计算机断层扫描(SR-µCT)评估了果蝇幼虫/蛹在低氧、常氧和高氧(10、21 或 40kPa 氧气)中的饲养对身体大小和飞行肌肉的气管供应的影响,以评估飞行肌肉体积和主要气管主干,并使用共聚焦显微镜评估气管。低氧饲养会降低胸部长度,而高氧饲养会降低飞行肌肉体积,这表明这两种极端情况都有负面影响。在广泛的生物体尺度上的断层扫描没有发现主要气管在低氧饲养条件下扩大的证据,尽管气管大小与肌肉体积成比例。然而,使用共聚焦成像,我们发现飞行肌肉内的气管分支密度与饲养氧气水平之间存在很强的负相关关系,并且在低氧饲养的动物中,气管分支长度更短。尽管先前对其他昆虫更大的气管的研究表明轴向扩散能力应该随着分支的连续几代而保持恒定,但在精细的气管网络中没有发现这种模式,这可能是由于在这种情况下径向扩散的重要性增加。总体而言,果蝇对饲养氧气水平的反应是在小气管和气管分支中进行补偿性形态变化,但飞行肌肉的气管供应的大多数其他结构组件仍保持稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验