Suppr超能文献

微生物代谢网络位于黏液层,可导致肠道共生菌产生不依赖饮食的丁酸和维生素 B。

Microbial Metabolic Networks at the Mucus Layer Lead to Diet-Independent Butyrate and Vitamin B Production by Intestinal Symbionts.

机构信息

Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands

Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.

出版信息

mBio. 2017 Sep 19;8(5):e00770-17. doi: 10.1128/mBio.00770-17.

Abstract

has evolved to specialize in the degradation and utilization of host mucus, which it may use as the sole source of carbon and nitrogen. Mucus degradation and fermentation by are known to result in the liberation of oligosaccharides and subsequent production of acetate, which becomes directly available to microorganisms in the vicinity of the intestinal mucosa. Coculturing experiments of with non-mucus-degrading butyrate-producing bacteria , , and resulted in syntrophic growth and production of butyrate. In addition, we demonstrate that the production of pseudovitamin B by results in production of propionate by , which suggests that this syntrophy is indeed bidirectional. These data are proof of concept for syntrophic and other symbiotic microbe-microbe interactions at the intestinal mucosal interface. The observed metabolic interactions between and butyrogenic bacterial taxa support the existence of colonic vitamin and butyrate production pathways that are dependent on host glycan production and independent of dietary carbohydrates. We infer that the intestinal symbiont can indirectly stimulate intestinal butyrate levels in the vicinity of the intestinal epithelial cells with potential health benefits to the host. The intestinal microbiota is said to be a stable ecosystem where many networks between microorganisms are formed. Here we present a proof of principle study of microbial interaction at the intestinal mucus layer. We show that indigestible oligosaccharide chains within mucus become available for a broad range of intestinal microbes after degradation and liberation of sugars by the species This leads to the microbial synthesis of vitamin B, 1,2-propanediol, propionate, and butyrate, which are beneficial to the microbial ecosystem and host epithelial cells.

摘要

已经进化为专门降解和利用宿主黏液,它可能将其作为碳和氮的唯一来源。已知通过降解和发酵宿主黏液,会导致低聚糖的释放,随后产生乙酸盐,这可直接被肠黏膜附近的微生物利用。与不能降解黏液但能产生丁酸盐的细菌 、 和 共培养实验导致了协同生长和丁酸盐的产生。此外,我们证明了 产生假维生素 B 会导致 产生丙酸盐,这表明这种共生关系确实是双向的。这些数据证明了肠道黏膜界面上微生物-微生物协同和其他共生相互作用的概念。在 和产丁酸盐细菌分类群之间观察到的代谢相互作用支持了结肠维生素和丁酸盐产生途径的存在,这些途径依赖于宿主聚糖的产生,而不依赖于饮食中的碳水化合物。我们推断,肠道共生体 可以通过与肠上皮细胞附近的肠道微生物间接刺激丁酸水平,从而对宿主产生潜在的健康益处。肠道微生物群被认为是一个稳定的生态系统,其中形成了许多微生物之间的网络。在这里,我们提出了一个在肠道黏液层进行微生物相互作用的原理证明研究。我们表明,在物种 降解和释放糖后,黏液中的不可消化的低聚糖链可供广泛的肠道微生物利用。这导致微生物合成维生素 B、1,2-丙二醇、丙酸盐和丁酸盐,这对微生物生态系统和宿主上皮细胞都是有益的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80d6/5605934/e22163e2ff3c/mbo0041734820001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验