Leijon Helena, Kaprio Tuomas, Heiskanen Annamari, Satomaa Tero, Hiltunen Jukka O, Miettinen Markku M, Arola Johanna, Haglund Caj
Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, FIN-00014 University of Helsinki, Helsinki, Finland.
Department of Surgery, Päijät-Häme Central Hospital, 15850 Lahti, Finland.
J Clin Endocrinol Metab. 2017 Nov 1;102(11):3990-4000. doi: 10.1210/jc.2017-00401.
No effective methods for separating primary pheochromocytomas and paragangliomas with metastatic potential are currently available. The identification of specific asparagine-linked glycan (N-glycan) structures, which are associated with metastasized pheochromocytomas and paragangliomas, may serve as a diagnostic tool.
To identify differences in N-glycomic profiles of primary metastasized and nonmetastasized pheochromocytomas and paragangliomas.
This study was conducted at Helsinki University Hospital, University of Helsinki, and Glykos Finland Ltd. and included 16 pheochromocytomas and paragangliomas: 8 primary metastasized pheochromocytomas or paragangliomas and 8 nonmetastasized tumors.
N-glycan structures were analyzed with matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) profiling of formalin-fixed, paraffin-embedded tissue samples.
N-glycan profile of tumor tissue.
Four groups of neutral N-glycan signals were more abundant in metastasized tumors than in nonmetastasized tumors: complex-type N-glycan signals of cancer-associated terminal N-acetylglucosamine, multifucosylated glycans (complex fucosylation), hybrid-type N-glycans, and fucosylated pauci-mannose-type N-glycans. Three groups of acidic N-glycans were more abundant in metastasized tumors: multifucosylated glycans, acid ester-modified (sulfated or phosphorylated) glycans, and hybrid-type/monoantennary N-glycans. Fucosylation and complex fucosylation were significantly more abundant in metastasized paragangliomas and pheochromocytomas than in nonmetastasized tumors for individual tests but were over the false positivity critical rate, when adjusted for multiplicity testing.
MALDI-TOF MS profiling of primary pheochromocytomas and paragangliomas can identify diseases with metastatic potential based on their different N-glycan profiles. Thus, malignancy-linked N-glycan structures may serve as potential diagnostic tools for pheochromocytomas and paragangliomas.
目前尚无有效的方法来区分具有转移潜能的原发性嗜铬细胞瘤和副神经节瘤。鉴定与转移性嗜铬细胞瘤和副神经节瘤相关的特定天冬酰胺连接聚糖(N-聚糖)结构,可能成为一种诊断工具。
确定原发性转移性和非转移性嗜铬细胞瘤及副神经节瘤的N-糖组图谱差异。
本研究在赫尔辛基大学医院、赫尔辛基大学和芬兰Glykos有限公司开展,纳入了16例嗜铬细胞瘤和副神经节瘤:8例原发性转移性嗜铬细胞瘤或副神经节瘤以及8例非转移性肿瘤。
采用基质辅助激光解吸电离飞行时间(MALDI-TOF)质谱分析法对福尔马林固定、石蜡包埋的组织样本进行N-聚糖结构分析。
肿瘤组织的N-聚糖图谱。
四组中性N-聚糖信号在转移性肿瘤中比在非转移性肿瘤中更为丰富:与癌症相关的末端N-乙酰葡糖胺的复合型N-聚糖信号、多岩藻糖基化聚糖(复杂岩藻糖基化)、杂合型N-聚糖以及岩藻糖基化寡甘露糖型N-聚糖。三组酸性N-聚糖在转移性肿瘤中更为丰富:多岩藻糖基化聚糖、酸酯修饰(硫酸化或磷酸化)聚糖以及杂合型/单天线N-聚糖。在个体检测中,岩藻糖基化和复杂岩藻糖基化在转移性副神经节瘤和嗜铬细胞瘤中显著高于非转移性肿瘤,但在进行多重检验校正后,超过了假阳性临界率。
原发性嗜铬细胞瘤和副神经节瘤的MALDI-TOF质谱分析可以根据其不同的N-聚糖图谱识别具有转移潜能的疾病。因此,与恶性肿瘤相关的N-聚糖结构可能成为嗜铬细胞瘤和副神经节瘤的潜在诊断工具。