Institute of Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland.
Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
J Chem Phys. 2017 Sep 21;147(11):115101. doi: 10.1063/1.4994130.
Based on the theory of the construction of coarse-grained force fields for polymer chains described in our recent work [A. K. Sieradzan et al., J. Chem. Phys. 146, 124106 (2017)], in this work effective coarse-grained potentials, to be used in the SUGRES-1P model of polysaccharides that is being developed in our laboratory, have been determined for the O⋯O⋯O virtual-bond angles (θ) and for the dihedral angles for rotation about the O⋯O virtual bonds (γ) of 1 → 4-linked glucosyl polysaccharides, for all possible combinations of [α,β]-[d,l]-glucose. The potentials of mean force corresponding to the virtual-bond angles and the virtual-bond dihedral angles were calculated from the free-energy surfaces of [α,β]-[d,l]-glucose pairs, determined by umbrella-sampling molecular-dynamics simulations with the AMBER12 force field, or combinations of the surfaces of two pairs sharing the overlapping residue, respectively, by integrating the respective Boltzmann factor over the dihedral angles λ for the rotation of the sugar units about the O⋯O virtual bonds. Analytical expressions were subsequently fitted to the potentials of mean force. The virtual-bond-torsional potentials depend on both virtual-bond-dihedral angles and virtual-bond angles. The virtual-bond-angle potentials contain a single minimum at about θ=140 for all pairs except β-d-[α,β]-l-glucose, where the global minimum is shifted to θ=150 and a secondary minimum appears at θ=90. The torsional potentials favor small negative γ angles for the α-d-glucose and extended negative angles γ for the β-d-glucose chains, as observed in the experimental structures of starch and cellulose, respectively. It was also demonstrated that the approximate expression derived based on Kubo's cluster-cumulant theory, whose coefficients depend on the identity of the disugar units comprising a trisugar unit that defines a torsional potential, fits simultaneously all torsional potentials very well, thus reducing the number of parameters significantly.
基于我们最近的工作[1]中描述的聚合物链粗粒力场构建理论,本文为我们实验室正在开发的多糖 SUGRES-1P 模型,确定了 O⋯O⋯O 虚拟键角(θ)和 O⋯O 虚拟键旋转的二面角(γ)的有效粗粒势,适用于所有可能的[α,β]-[d,l]-葡萄糖连接的 1→4 糖苷键葡聚糖。通过使用 AMBER12 力场的伞形采样分子动力学模拟或分别共享重叠残基的两个对的表面组合,从[α,β]-[d,l]-葡萄糖对的自由能表面计算出对应于虚拟键角和虚拟键二面角的平均力势。通过在糖单位围绕 O⋯O 虚拟键旋转的二面角 λ上对各自的玻尔兹曼因子进行积分,分别为共享重叠残基的两个对的表面组合,从[α,β]-[d,l]-葡萄糖对的自由能表面计算出对应于虚拟键角和虚拟键二面角的平均力势。随后,对平均力势进行了分析拟合。虚拟键扭转势取决于虚拟键二面角和虚拟键角。除了β-d-[α,β]-l-葡萄糖外,所有对的虚拟键角势都在θ=140 左右只有一个最小值,其中全局最小值移至θ=150,并且在θ=90 左右出现了第二个最小值。扭转势有利于α-d-葡萄糖的小负γ角和β-d-葡萄糖链的扩展负角γ,这与淀粉和纤维素的实验结构一致。还证明了基于 Kubo 的团簇累积理论推导出的近似表达式,其系数取决于定义扭转势的三糖单元中双糖单元的身份,非常好地拟合了所有扭转势,从而大大减少了参数的数量。
[1] A. K. Sieradzan, et al., J. Chem. Phys. 146, 124106 (2017).