Suppr超能文献

Helix-7 在 Argonaute2 中为 microRNA 种子区域形成提供结构,从而实现快速的靶标识别。

Helix-7 in Argonaute2 shapes the microRNA seed region for rapid target recognition.

机构信息

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.

Department of BioNanoScience, Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands.

出版信息

EMBO J. 2018 Jan 4;37(1):75-88. doi: 10.15252/embj.201796474. Epub 2017 Sep 22.

Abstract

Argonaute proteins use microRNAs (miRNAs) to identify mRNAs targeted for post-transcriptional repression. Biochemical assays have demonstrated that Argonaute functions by modulating the binding properties of its miRNA guide so that pairing to the seed region is exquisitely fast and accurate. However, the mechanisms used by Argonaute to reshape the binding properties of its small RNA guide remain poorly understood. Here, we identify a structural element, α-helix-7, in human Argonaute2 (Ago2) that is required for speed and fidelity in binding target RNAs. Biochemical, structural, and single-molecule data indicate that helix-7 acts as a molecular wedge that pivots to enforce rapid making and breaking of miRNA:target base pairs in the 3' half of the seed region. These activities allow Ago2 to rapidly dismiss off-targets and dynamically search for seed-matched sites at a rate approaching the limit of diffusion.

摘要

Argonaute 蛋白利用 microRNAs(miRNAs)来识别靶 mRNA 以进行转录后抑制。生化分析表明,Argonaute 通过调节其 miRNA 指导的结合特性来发挥作用,从而使与种子区域的配对极其快速和准确。然而,Argonaute 用于重塑其小 RNA 指导的结合特性的机制仍知之甚少。在这里,我们鉴定了人类 Argonaute2(Ago2)中的一个结构元件,α-螺旋-7,它是结合靶 RNA 时速度和保真度所必需的。生化、结构和单分子数据表明,螺旋-7 充当分子楔子,枢转而强制在种子区域的 3' 半部分快速形成和打破 miRNA:靶碱基对。这些活性使 Ago2 能够快速排除非靶标,并以接近扩散极限的速度动态搜索与种子匹配的位点。

相似文献

1
Helix-7 in Argonaute2 shapes the microRNA seed region for rapid target recognition.
EMBO J. 2018 Jan 4;37(1):75-88. doi: 10.15252/embj.201796474. Epub 2017 Sep 22.
2
Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2.
EMBO J. 2019 Jul 1;38(13):e101153. doi: 10.15252/embj.2018101153. Epub 2019 Apr 26.
3
4
Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties.
Cell. 2012 Nov 21;151(5):1055-67. doi: 10.1016/j.cell.2012.10.036.
5
New insights into the function of mammalian Argonaute2.
PLoS Genet. 2020 Nov 12;16(11):e1009058. doi: 10.1371/journal.pgen.1009058. eCollection 2020 Nov.
6
Identifying mRNA sequence elements for target recognition by human Argonaute proteins.
Genome Res. 2014 May;24(5):775-85. doi: 10.1101/gr.162230.113. Epub 2014 Mar 24.
7
The crystal structure of human Argonaute2.
Science. 2012 May 25;336(6084):1037-40. doi: 10.1126/science.1221551. Epub 2012 Apr 26.
8
Effects of the PIWI/MID domain of Argonaute protein on the association of miRNAi's seed base with the target.
RNA. 2019 May;25(5):620-629. doi: 10.1261/rna.069328.118. Epub 2019 Feb 15.
10
An Argonaute phosphorylation cycle promotes microRNA-mediated silencing.
Nature. 2017 Feb 9;542(7640):197-202. doi: 10.1038/nature21025. Epub 2017 Jan 23.

引用本文的文献

1
A unifying model for microRNA-guided silencing of messenger RNAs.
Res Sq. 2025 Apr 22:rs.3.rs-6422368. doi: 10.21203/rs.3.rs-6422368/v1.
2
A unifying model for microRNA-guided silencing of messenger RNAs.
bioRxiv. 2025 Mar 17:2025.03.16.643529. doi: 10.1101/2025.03.16.643529.
4
The structural basis for RNA slicing by human Argonaute2.
Cell Rep. 2025 Jan 28;44(1):115166. doi: 10.1016/j.celrep.2024.115166. Epub 2024 Dec 31.
5
Structural insights into RNA cleavage by PIWI Argonaute.
Nature. 2025 Mar;639(8053):250-259. doi: 10.1038/s41586-024-08438-1. Epub 2025 Jan 15.
6
Structural basis for gene silencing by siRNAs in humans.
bioRxiv. 2024 Dec 6:2024.12.05.627081. doi: 10.1101/2024.12.05.627081.
7
The structural basis for RNA slicing by human Argonaute2.
bioRxiv. 2024 Aug 20:2024.08.19.608718. doi: 10.1101/2024.08.19.608718.
8
Enhancing siRNA efficacy in vivo with extended nucleic acid backbones.
Nat Biotechnol. 2024 Aug 1. doi: 10.1038/s41587-024-02336-7.
9
The guide-RNA sequence dictates the slicing kinetics and conformational dynamics of the Argonaute silencing complex.
Mol Cell. 2024 Aug 8;84(15):2918-2934.e11. doi: 10.1016/j.molcel.2024.06.026. Epub 2024 Jul 17.
10
RNA-guided RNA silencing by an Asgard archaeal Argonaute.
Nat Commun. 2024 Jun 29;15(1):5499. doi: 10.1038/s41467-024-49452-1.

本文引用的文献

1
Crystal Structure of Silkworm PIWI-Clade Argonaute Siwi Bound to piRNA.
Cell. 2016 Oct 6;167(2):484-497.e9. doi: 10.1016/j.cell.2016.09.002. Epub 2016 Sep 29.
2
Recent progress toward the use of circulating microRNAs as clinical biomarkers.
Arch Toxicol. 2016 Dec;90(12):2959-2978. doi: 10.1007/s00204-016-1828-2. Epub 2016 Sep 1.
3
MicroRNAs in heart failure: Non-coding regulators of metabolic function.
Biochim Biophys Acta. 2016 Dec;1862(12):2276-2287. doi: 10.1016/j.bbadis.2016.08.009. Epub 2016 Aug 18.
4
Why Argonaute is needed to make microRNA target search fast and reliable.
Semin Cell Dev Biol. 2017 May;65:20-28. doi: 10.1016/j.semcdb.2016.05.017. Epub 2016 May 26.
5
6
A Dynamic Search Process Underlies MicroRNA Targeting.
Cell. 2015 Jul 2;162(1):96-107. doi: 10.1016/j.cell.2015.06.032.
8
Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs.
Mol Cell. 2015 Jul 2;59(1):117-24. doi: 10.1016/j.molcel.2015.04.027.
9
Structural basis for microRNA targeting.
Science. 2014 Oct 31;346(6209):608-13. doi: 10.1126/science.1258040.
10
Surface passivation for single-molecule protein studies.
J Vis Exp. 2014 Apr 24(86):50549. doi: 10.3791/50549.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验