Suppr超能文献

根据高严重度火灾的发生概率对森林燃料处理进行优先级排序,可恢复塞拉内华达森林的适应能力。

Prioritizing forest fuels treatments based on the probability of high-severity fire restores adaptive capacity in Sierran forests.

机构信息

Biology Department, University of New Mexico, Albuquerque, NM, USA.

Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA.

出版信息

Glob Chang Biol. 2018 Feb;24(2):729-737. doi: 10.1111/gcb.13913. Epub 2017 Oct 11.

Abstract

In frequent fire forests of the western United States, a legacy of fire suppression coupled with increases in fire weather severity have altered fire regimes and vegetation dynamics. When coupled with projected climate change, these conditions have the potential to lead to vegetation type change and altered carbon (C) dynamics. In the Sierra Nevada, fuels reduction approaches that include mechanical thinning followed by regular prescribed fire are one approach to restore the ability of the ecosystem to tolerate episodic fire and still sequester C. Yet, the spatial extent of the area requiring treatment makes widespread treatment implementation unlikely. We sought to determine if a priori knowledge of where uncharacteristic wildfire is most probable could be used to optimize the placement of fuels treatments in a Sierra Nevada watershed. We developed two treatment placement strategies: the naive strategy, based on treating all operationally available area and the optimized strategy, which only treated areas where crown-killing fires were most probable. We ran forecast simulations using projected climate data through 2,100 to determine how the treatments differed in terms of C sequestration, fire severity, and C emissions relative to a no-management scenario. We found that in both the short (20 years) and long (100 years) term, both management scenarios increased C stability, reduced burn severity, and consequently emitted less C as a result of wildfires than no-management. Across all metrics, both scenarios performed the same, but the optimized treatment required significantly less C removal (naive=0.42 Tg C, optimized=0.25 Tg C) to achieve the same treatment efficacy. Given the extent of western forests in need of fire restoration, efficiently allocating treatments is a critical task if we are going to restore adaptive capacity in frequent-fire forests.

摘要

在美国西部频繁发生火灾的森林中,由于灭火措施的长期实施以及火灾天气严重程度的增加,已经改变了火灾发生的规律和植被动态。再加上预计的气候变化,这些条件有可能导致植被类型的变化和碳(C)动态的改变。在内华达山脉,包括机械疏伐然后定期进行规定火烧在内的减少燃料措施是恢复生态系统耐受偶发性火灾并仍然封存 C 的能力的一种方法。然而,需要处理的区域的空间范围使得广泛实施处理措施变得不太可能。我们试图确定是否可以利用关于非典型野火最可能发生的先验知识来优化内华达山脉流域的燃料处理位置。我们开发了两种处理放置策略:基于处理所有可操作区域的盲目策略和仅处理树冠致死火灾最可能发生的区域的优化策略。我们使用预测气候数据运行了预测模拟,直到 2100 年,以确定与无管理情景相比,这些处理在碳封存、火灾严重程度和 C 排放方面的差异。我们发现,在短期(20 年)和长期(100 年)内,这两种管理情景都增加了 C 的稳定性,降低了燃烧严重程度,因此与无管理相比,野火造成的 C 排放更少。在所有指标中,两种情景的表现相同,但优化处理需要的 C 去除量明显减少(盲目处理=0.42TgC,优化处理=0.25TgC)才能达到相同的处理效果。考虑到西部森林需要进行火灾恢复的程度,如果我们要恢复频繁发生火灾的森林的适应性能力,那么有效地分配处理措施是一项关键任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验