Suppr超能文献

体外构建人原代三维网络骨细胞。

Ex vivo construction of human primary 3D-networked osteocytes.

机构信息

Department of Materials Science and Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.

Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, USA.

出版信息

Bone. 2017 Dec;105:245-252. doi: 10.1016/j.bone.2017.09.012. Epub 2017 Sep 21.

Abstract

A human bone tissue model was developed by constructing ex vivo the 3D network of osteocytes via the biomimetic assembly of primary human osteoblastic cells with 20-25μm microbeads and subsequent microfluidic perfusion culture. The biomimetic assembly: (1) enabled 3D-constructed cells to form cellular network via processes with an average cell-to-cell distance of 20-25μm, and (2) inhibited cell proliferation within the interstitial confine between the microbeads while the confined cells produced extracellular matrix (ECM) to form a mechanically integrated structure. The mature osteocytic expressions of SOST and FGF23 genes became significantly higher, especially for SOST by 250 folds during 3D culture. The results validate that the bone tissue model: (1) consists of 3D cellular network of primary human osteocytes, (2) mitigates the osteoblastic differentiation and proliferation of primary osteoblast-like cells encountered in 2D culture, and (3) therefore reproduces ex vivo the phenotype of human 3D-networked osteocytes. The 3D tissue construction approach is expected to provide a clinically relevant and high-throughput means for evaluating drugs and treatments that target bone diseases with in vitro convenience.

摘要

构建了一个人骨组织模型,通过仿生组装原代人成骨细胞与 20-25μm 微珠,并随后进行微流控灌注培养,构建了体外 3D 骨细胞网络。仿生组装:(1)使 3D 构建的细胞通过平均细胞间距离为 20-25μm 的过程形成细胞网络;(2)在微珠之间的间隙限制细胞增殖,同时限制细胞产生细胞外基质 (ECM) 以形成机械整合结构。SOST 和 FGF23 基因的成熟成骨细胞表达显著增加,特别是在 3D 培养中 SOST 增加了 250 倍。结果验证了该骨组织模型:(1)由原代人成骨细胞的 3D 细胞网络组成;(2)减轻了 2D 培养中遇到的原代成骨样细胞的成骨分化和增殖;(3)因此,在体外再现了人 3D 网络骨细胞的表型。3D 组织构建方法有望为评估针对骨疾病的药物和治疗方法提供一种具有临床相关性和高通量的体外便利手段。

相似文献

1
Ex vivo construction of human primary 3D-networked osteocytes.
Bone. 2017 Dec;105:245-252. doi: 10.1016/j.bone.2017.09.012. Epub 2017 Sep 21.
2
Hypoxic Three-Dimensional Cellular Network Construction Replicates Ex Vivo the Phenotype of Primary Human Osteocytes.
Tissue Eng Part A. 2018 Mar;24(5-6):458-468. doi: 10.1089/ten.TEA.2017.0103. Epub 2017 Aug 2.
3
Ex vivo replication of phenotypic functions of osteocytes through biomimetic 3D bone tissue construction.
Bone. 2018 Jan;106:148-155. doi: 10.1016/j.bone.2017.10.019. Epub 2017 Oct 21.
4
Ex vivo 3D osteocyte network construction with primary murine bone cells.
Bone Res. 2015 Sep 15;3:15026. doi: 10.1038/boneres.2015.26. eCollection 2015.
5
Human primary osteocyte differentiation in a 3D culture system.
J Bone Miner Res. 2009 Nov;24(11):1927-35. doi: 10.1359/jbmr.090517.
6
Alternating Differentiation and Dedifferentiation between Mature Osteoblasts and Osteocytes.
Sci Rep. 2019 Sep 25;9(1):13842. doi: 10.1038/s41598-019-50236-7.
9
A 3D bioreactor model to study osteocyte differentiation and mechanobiology under perfusion and compressive mechanical loading.
Acta Biomater. 2024 Aug;184:210-225. doi: 10.1016/j.actbio.2024.06.041. Epub 2024 Jul 4.

引用本文的文献

1
Development of a BMU-on-a-chip model based on spatiotemporal regulation of cellular interactions in the bone remodeling cycle.
Mater Today Bio. 2025 Mar 14;32:101658. doi: 10.1016/j.mtbio.2025.101658. eCollection 2025 Jun.
2
3
Osteocyte-Like Cells Differentiated From Primary Osteoblasts in an Artificial Human Bone Tissue Model.
JBMR Plus. 2023 Jun 28;7(9):e10792. doi: 10.1002/jbm4.10792. eCollection 2023 Sep.
4
model to study confined osteocyte networks exposed to flow-induced mechanical stimuli.
Biomed Mater. 2022 Nov 25;17(6). doi: 10.1088/1748-605X/aca37c.
5
Natural killer cells activity against multiple myeloma cells is modulated by osteoblast-induced IL-6 and IL-10 production.
Heliyon. 2022 Mar 24;8(3):e09167. doi: 10.1016/j.heliyon.2022.e09167. eCollection 2022 Mar.
6
A Bioreactor for 3D Modeling of the Mechanical Stimulation of Osteocytes.
Front Bioeng Biotechnol. 2022 Mar 25;10:797542. doi: 10.3389/fbioe.2022.797542. eCollection 2022.
7
A Three-Dimensional Mechanical Loading Model of Human Osteocytes in Their Native Matrix.
Calcif Tissue Int. 2022 Mar;110(3):367-379. doi: 10.1007/s00223-021-00919-z. Epub 2021 Oct 13.
8
9
Osteon: Structure, Turnover, and Regeneration.
Tissue Eng Part B Rev. 2022 Apr;28(2):261-278. doi: 10.1089/ten.TEB.2020.0322. Epub 2021 Mar 8.
10
Cell Sources for Human In vitro Bone Models.
Curr Osteoporos Rep. 2021 Feb;19(1):88-100. doi: 10.1007/s11914-020-00648-6. Epub 2021 Jan 15.

本文引用的文献

1
Isolation of osteocytes from human trabecular bone.
Bone. 2016 Jul;88:64-72. doi: 10.1016/j.bone.2016.04.017. Epub 2016 Apr 22.
2
Sclerostin Inhibition in the Management of Osteoporosis.
Calcif Tissue Int. 2016 Apr;98(4):370-80. doi: 10.1007/s00223-016-0126-6. Epub 2016 Mar 26.
4
Ex vivo 3D osteocyte network construction with primary murine bone cells.
Bone Res. 2015 Sep 15;3:15026. doi: 10.1038/boneres.2015.26. eCollection 2015.
5
Microbeads-Guided Reconstruction of 3D Osteocyte Network during Microfluidic Perfusion Culture.
J Mater Chem B. 2015 May 7;3(17):3625-3633. doi: 10.1039/C5TB00421G. Epub 2015 Mar 25.
6
Well plate-based perfusion culture device for tissue and tumor microenvironment replication.
Lab Chip. 2015 Jul 7;15(13):2854-2863. doi: 10.1039/c5lc00341e. Epub 2015 May 29.
7
Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases.
Cancer Res. 2015 Jun 1;75(11):2151-8. doi: 10.1158/0008-5472.CAN-14-2493. Epub 2015 Apr 8.
8
A new method to investigate how mechanical loading of osteocytes controls osteoblasts.
Front Endocrinol (Lausanne). 2014 Dec 9;5:208. doi: 10.3389/fendo.2014.00208. eCollection 2014.
9
Osteocyte biology and space flight.
Curr Biotechnol. 2013;2(3):179-183. doi: 10.2174/22115501113029990017.
10
Role of osteocytes in multiple myeloma bone disease.
Curr Opin Support Palliat Care. 2014 Dec;8(4):407-13. doi: 10.1097/SPC.0000000000000090.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验