Suppr超能文献

具有平滑基线风险估计器的Cox比例风险模型的因果中介分析

Causal Mediation Analysis for the Cox Proportional Hazards Model with a Smooth Baseline Hazard Estimator.

作者信息

Wang Wei, Albert Jeffrey M

机构信息

Center of Biostatistics and Bioinformatics, New Guyton Research Building G562, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216.

Department of Epidemiology and Biostatistics, School of Medicine WG-82S, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, , ,

出版信息

J R Stat Soc Ser C Appl Stat. 2017 Aug;66(4):741-757. doi: 10.1111/rssc.12188. Epub 2016 Oct 19.

Abstract

An important problem within the social, behavioral, and health sciences is how to partition an exposure effect (e.g. treatment or risk factor) among specific pathway effects and to quantify the importance of each pathway. Mediation analysis based on the potential outcomes framework is an important tool to address this problem and we consider the estimation of mediation effects for the proportional hazards model in this paper. We give precise definitions of the total effect, natural indirect effect, and natural direct effect in terms of the survival probability, hazard function, and restricted mean survival time within the standard two-stage mediation framework. To estimate the mediation effects on different scales, we propose a mediation formula approach in which simple parametric models (fractional polynomials or restricted cubic splines) are utilized to approximate the baseline log cumulative hazard function. Simulation study results demonstrate low bias of the mediation effect estimators and close-to-nominal coverage probability of the confidence intervals for a wide range of complex hazard shapes. We apply this method to the Jackson Heart Study data and conduct sensitivity analysis to assess the impact on the mediation effects inference when the no unmeasured mediator-outcome confounding assumption is violated.

摘要

社会科学、行为科学和健康科学领域中的一个重要问题是如何在特定路径效应之间划分暴露效应(如治疗或风险因素),并量化每条路径的重要性。基于潜在结果框架的中介分析是解决这一问题的重要工具,本文我们考虑比例风险模型中介效应的估计。我们在标准的两阶段中介框架内,根据生存概率、风险函数和受限平均生存时间,给出了总效应、自然间接效应和自然直接效应的精确定义。为了估计不同尺度上的中介效应,我们提出了一种中介公式方法,其中利用简单的参数模型(分数多项式或受限立方样条)来近似基线对数累积风险函数。模拟研究结果表明,对于广泛的复杂风险形状,中介效应估计量的偏差较小,置信区间的覆盖概率接近名义值。我们将该方法应用于杰克逊心脏研究数据,并进行敏感性分析,以评估在违反无未测量的中介-结果混杂假设时对中介效应推断的影响。

相似文献

1
Causal Mediation Analysis for the Cox Proportional Hazards Model with a Smooth Baseline Hazard Estimator.
J R Stat Soc Ser C Appl Stat. 2017 Aug;66(4):741-757. doi: 10.1111/rssc.12188. Epub 2016 Oct 19.
2
Exposure assessment for Cox proportional hazards cure models with interval-censored survival data.
Biom J. 2022 Jan;64(1):91-104. doi: 10.1002/bimj.202000271. Epub 2021 Aug 10.
4
Causal inference with a mediated proportional hazards regression model.
Commun Stat Simul Comput. 2024;53(1):203-218. doi: 10.1080/03610918.2021.2014887. Epub 2021 Dec 20.
5
Assessing natural direct and indirect effects for a continuous exposure and a dichotomous outcome.
J Stat Theory Pract. 2016;10(3):574-587. doi: 10.1080/15598608.2016.1203843. Epub 2016 Jun 22.
6
Mediation analysis for mixture Cox proportional hazards cure models.
Stat Methods Med Res. 2021 Jun;30(6):1554-1572. doi: 10.1177/09622802211003113. Epub 2021 Apr 9.
8
Survival estimation through the cumulative hazard with monotone natural cubic splines using convex optimization-the HCNS approach.
Comput Methods Programs Biomed. 2020 Jul;190:105357. doi: 10.1016/j.cmpb.2020.105357. Epub 2020 Jan 29.
9
Causal mediation analysis on failure time outcome without sequential ignorability.
Lifetime Data Anal. 2017 Oct;23(4):533-559. doi: 10.1007/s10985-016-9377-9. Epub 2016 Jul 27.
10
Estimation of mediation effects for zero-inflated regression models.
Stat Med. 2012 Nov 20;31(26):3118-32. doi: 10.1002/sim.5380. Epub 2012 Jun 19.

引用本文的文献

1
Correcting for bias due to mismeasured exposure in mediation analysis with a survival outcome.
J R Stat Soc Ser C Appl Stat. 2025 Feb 14;74(4):969-993. doi: 10.1093/jrsssc/qlaf010. eCollection 2025 Nov.
2
Causal inference with a mediated proportional hazards regression model.
Commun Stat Simul Comput. 2024;53(1):203-218. doi: 10.1080/03610918.2021.2014887. Epub 2021 Dec 20.
3
Religion and survival among European older adults.
Eur J Ageing. 2023 Oct 30;20(1):42. doi: 10.1007/s10433-023-00789-4.
4
Risk-aware survival time prediction from whole slide pathological images.
Sci Rep. 2022 Dec 19;12(1):21948. doi: 10.1038/s41598-022-26096-z.
5
Pet ownership and survival of European older adults.
Eur J Ageing. 2022 Nov 4;19(4):1549-1560. doi: 10.1007/s10433-022-00739-6. eCollection 2022 Dec.
6
A Review of High-Dimensional Mediation Analyses in DNA Methylation Studies.
Methods Mol Biol. 2022;2432:123-135. doi: 10.1007/978-1-0716-1994-0_10.
7
Exposure assessment for Cox proportional hazards cure models with interval-censored survival data.
Biom J. 2022 Jan;64(1):91-104. doi: 10.1002/bimj.202000271. Epub 2021 Aug 10.
8
Mediation analysis for survival data with high-dimensional mediators.
Bioinformatics. 2021 Nov 5;37(21):3815-3821. doi: 10.1093/bioinformatics/btab564.

本文引用的文献

1
Sensitivity analyses for parametric causal mediation effect estimation.
Biostatistics. 2015 Apr;16(2):339-51. doi: 10.1093/biostatistics/kxu048. Epub 2014 Nov 12.
2
Inverse odds ratio-weighted estimation for causal mediation analysis.
Stat Med. 2013 Nov 20;32(26):4567-80. doi: 10.1002/sim.5864. Epub 2013 Jun 7.
3
Estimation of mediation effects for zero-inflated regression models.
Stat Med. 2012 Nov 20;31(26):3118-32. doi: 10.1002/sim.5380. Epub 2012 Jun 19.
4
The causal mediation formula--a guide to the assessment of pathways and mechanisms.
Prev Sci. 2012 Aug;13(4):426-36. doi: 10.1007/s11121-011-0270-1.
5
Comorbidity as a mediator of survival disparity between younger and older women diagnosed with metastatic breast cancer.
Hypertension. 2012 Feb;59(2):205-11. doi: 10.1161/HYPERTENSIONAHA.111.171736. Epub 2011 Dec 19.
6
On causal mediation analysis with a survival outcome.
Int J Biostat. 2011;7(1):Article 33. doi: 10.2202/1557-4679.1351. Epub 2011 Sep 2.
7
Causal mediation analysis with survival data.
Epidemiology. 2011 Jul;22(4):582-5. doi: 10.1097/EDE.0b013e31821db37e.
9
Direct and indirect effects in a survival context.
Epidemiology. 2011 Jul;22(4):575-81. doi: 10.1097/EDE.0b013e31821c680c.
10
Generalized causal mediation analysis.
Biometrics. 2011 Sep;67(3):1028-38. doi: 10.1111/j.1541-0420.2010.01547.x. Epub 2011 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验