Wang Wei, Albert Jeffrey M
Center of Biostatistics and Bioinformatics, New Guyton Research Building G562, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216.
Department of Epidemiology and Biostatistics, School of Medicine WG-82S, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, , ,
J R Stat Soc Ser C Appl Stat. 2017 Aug;66(4):741-757. doi: 10.1111/rssc.12188. Epub 2016 Oct 19.
An important problem within the social, behavioral, and health sciences is how to partition an exposure effect (e.g. treatment or risk factor) among specific pathway effects and to quantify the importance of each pathway. Mediation analysis based on the potential outcomes framework is an important tool to address this problem and we consider the estimation of mediation effects for the proportional hazards model in this paper. We give precise definitions of the total effect, natural indirect effect, and natural direct effect in terms of the survival probability, hazard function, and restricted mean survival time within the standard two-stage mediation framework. To estimate the mediation effects on different scales, we propose a mediation formula approach in which simple parametric models (fractional polynomials or restricted cubic splines) are utilized to approximate the baseline log cumulative hazard function. Simulation study results demonstrate low bias of the mediation effect estimators and close-to-nominal coverage probability of the confidence intervals for a wide range of complex hazard shapes. We apply this method to the Jackson Heart Study data and conduct sensitivity analysis to assess the impact on the mediation effects inference when the no unmeasured mediator-outcome confounding assumption is violated.
社会科学、行为科学和健康科学领域中的一个重要问题是如何在特定路径效应之间划分暴露效应(如治疗或风险因素),并量化每条路径的重要性。基于潜在结果框架的中介分析是解决这一问题的重要工具,本文我们考虑比例风险模型中介效应的估计。我们在标准的两阶段中介框架内,根据生存概率、风险函数和受限平均生存时间,给出了总效应、自然间接效应和自然直接效应的精确定义。为了估计不同尺度上的中介效应,我们提出了一种中介公式方法,其中利用简单的参数模型(分数多项式或受限立方样条)来近似基线对数累积风险函数。模拟研究结果表明,对于广泛的复杂风险形状,中介效应估计量的偏差较小,置信区间的覆盖概率接近名义值。我们将该方法应用于杰克逊心脏研究数据,并进行敏感性分析,以评估在违反无未测量的中介-结果混杂假设时对中介效应推断的影响。