Fuente Asunción, Baruteau Clément, Neri Roberto, Carmona Andrés, Agúndez Marcelino, Goicoechea Javier R, Bachiller Rafael, Cernicharo José, Berné Olivier
Observatorio Astronómico Nacional (OAN,IGN), Apdo 112, E-28803 Alcalá de Henares, Spain.
IRAP, Université de Toulouse, CNRS, UPS, Toulouse, France.
Astrophys J Lett. 2017 Sep 1;846(1). doi: 10.3847/2041-8213/aa8558. Epub 2017 Aug 28.
One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.
行星形成面临的一个严峻挑战是原行星盘中卵石大小的尘埃颗粒迅速向内漂移。尘埃在盘状气体压力局部最大值处的捕获受到了很多理论关注,但仍缺乏观测支持。AB Aur 星盘的冷尘埃辐射在半径约 120 天文单位处形成一个不对称环,这表明尘埃被捕获在气体涡旋中。我们展示了对 AB Aur 星盘 1.12 毫米和 2.22 毫米尘埃连续辐射的高空间分辨率(0".58×0".78 ≈ 80×110 天文单位)NOEMA 观测结果。两个波长处流量比的显著方位变化表明大尘埃颗粒沿环存在尺寸分选。我们的连续图像还显示,与带有气体涡旋的尘埃捕获模型预测的情况相反,2.22 毫米处沿环的强度变化比 1.12 毫米处小。我们的双流体(气体 + 尘埃)流体动力学模拟表明,如果气体涡旋由于湍流扩散开始衰减,且尘埃颗粒因此根据其大小在不同时间尺度上失去方位捕获,那么这一特征就能得到很好的解释。我们的观测与模拟之间的比较使我们能够限制环中固体颗粒的尺寸分布和总质量,我们发现其量级约为 30 个地球质量,足以形成未来的岩石行星。