Dean Kevin M, Roudot Philippe, Welf Erik S, Pohlkamp Theresa, Garrelts Gerard, Herz Joachim, Fiolka Reto
Department of Cell Biology. UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas, United States of America.
Lyda Hill Department of Bioinformatics. UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas, United States of America.
Optica. 2017 Feb 20;4(2):263-271. doi: 10.1364/OPTICA.4.000263.
In fluorescence microscopy, the serial acquisition of 2D images to form a 3D volume limits the maximum imaging speed. This is particularly evident when imaging adherent cells in a light-sheet fluorescence microscopy format, as their elongated morphologies require ~200 image planes per image volume. Here, by illuminating the specimen with three light-sheets, each independently detected, we present a light-efficient, crosstalk free, and volumetrically parallelized 3D microscopy technique that is optimized for high-speed (up to 14 Hz) subcellular (300 nm lateral, 600 nm axial resolution) imaging of adherent cells. We demonstrate 3D imaging of intracellular processes, including cytoskeletal dynamics in single cell migration and collective wound healing for 1500 and 1000 time points, respectively. Further, we capture rapid biological processes, including trafficking of early endosomes with velocities exceeding 10 microns per second and calcium signaling in primary neurons.
在荧光显微镜中,通过连续采集二维图像以形成三维体积会限制最大成像速度。当以光片荧光显微镜形式对贴壁细胞进行成像时,这一点尤为明显,因为它们的细长形态每个图像体积需要约200个图像平面。在此,我们通过用三个光片照射样本(每个光片独立检测),提出了一种光效率高、无串扰且体积并行化的三维显微镜技术,该技术针对贴壁细胞的高速(高达14赫兹)亚细胞(横向300纳米,轴向分辨率600纳米)成像进行了优化。我们展示了细胞内过程的三维成像,分别在单细胞迁移和集体伤口愈合中对细胞骨架动力学进行了1500个和1000个时间点的成像。此外,我们捕捉到了快速的生物学过程,包括早期内体以超过每秒10微米的速度运输以及原代神经元中的钙信号传导。