Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
School of Forest Resources and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, 33314, USA.
Ecol Appl. 2018 Jan;28(1):119-134. doi: 10.1002/eap.1633. Epub 2017 Dec 11.
Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive land-use changes and management may buffer water quality against undesirable future climate changes, but changing climate may overwhelm management efforts to sustain freshwater supply and flood regulation. Spatially, changes in ecosystem services were heterogeneous across the landscape, underscoring the power of local actions and fine-scale management. Our research highlights the value of embracing spatial and temporal perspectives in managing ecosystem services and their complex interactions, and provides a system-level understanding for achieving sustainability of the food-water-climate nexus in agricultural landscapes.
在环境变化加速的情况下,维持农业景观中的粮食生产、水质、土壤保持、洪水和气候调节是一项紧迫的全球挑战。情景是关于未来可能发生的事情的故事,情景可以与生物物理模拟模型相结合,以定量探索未来可能会如何展开。然而,很少有研究将广泛的驱动因素(如气候、土地利用、管理、人口、人类饮食)纳入空间明确的、基于过程的模型中,以研究一组生态系统服务的时空动态和关系。在这里,我们使用动态陆地生态系统过程、生物地球化学、水和能量平衡模型 Agro-IBIS,模拟了美国威斯康星州 1345 公里长的 Yahara 流域 220×220 米范围内的九个生态系统服务(三个供给服务和六个调节服务),在四个对比情景下,从 2010 年到 2070 年。我们提出了以下三个问题:(1)替代未来情景下生态系统服务的供应如何变化?(2)景观上何处提供生态系统服务最容易受到未来社会生态变化的影响?(3)在替代未来情景中,粮食生产、水和生物地球化学服务之间的关系(即权衡、协同作用)是否随时间而变化?我们的研究结果表明,粮食生产随着未来土地利用选择和管理的变化而有很大的变化,并且在大多数情况下,其与水质和土壤保持的权衡关系仍然存在。然而,通过技术进步和可持续农业实践来减轻甚至扭转这种权衡关系的途径是显而易见的。在各个情景下都发现了调节服务之间的一致关系(例如,淡水供应与洪水和气候调节之间的权衡,以及水质、土壤保持和气候调节之间的协同作用),这表明维持这些服务的机遇和挑战。特别是,积极的土地利用变化和管理可以缓冲水质免受未来气候变化的不利影响,但气候变化可能会削弱管理努力,以维持淡水供应和洪水调节。在空间上,生态系统服务的变化在整个景观上是不均匀的,这突显了地方行动和精细管理的力量。我们的研究强调了在管理生态系统服务及其复杂相互作用时,采用空间和时间观点的价值,并为实现农业景观中粮食-水-气候关系的可持续性提供了系统层面的理解。