Department of Electrical Engineering, Technion - Israel Institue of Technology, Haifa, Israel.
FMRIB Centre, University of Oxford, Oxford, UK.
Med Phys. 2017 Dec;44(12):6166-6182. doi: 10.1002/mp.12599. Epub 2017 Oct 27.
In functional MRI (fMRI), faster acquisition via undersampling of data can improve the spatial-temporal resolution trade-off and increase statistical robustness through increased degrees-of-freedom. High-quality reconstruction of fMRI data from undersampled measurements requires proper modeling of the data. We present an fMRI reconstruction approach based on modeling the fMRI signal as a sum of periodic and fixed rank components, for improved reconstruction from undersampled measurements.
The proposed approach decomposes the fMRI signal into a component which has a fixed rank and a component consisting of a sum of periodic signals which is sparse in the temporal Fourier domain. Data reconstruction is performed by solving a constrained problem that enforces a fixed, moderate rank on one of the components, and a limited number of temporal frequencies on the other. Our approach is coined PEAR - PEriodic And fixed Rank separation for fast fMRI.
Experimental results include purely synthetic simulation, a simulation with real timecourses and retrospective undersampling of a real fMRI dataset. Evaluation was performed both quantitatively and visually versus ground truth, comparing PEAR to two additional recent methods for fMRI reconstruction from undersampled measurements. Results demonstrate PEAR's improvement in estimating the timecourses and activation maps versus the methods compared against at acceleration ratios of R = 8,10.66 (for simulated data) and R = 6.66,10 (for real data).
This paper presents PEAR, an undersampled fMRI reconstruction approach based on decomposing the fMRI signal to periodic and fixed rank components. PEAR results in reconstruction with higher fidelity than when using a fixed-rank based model or a conventional Low-rank + Sparse algorithm. We have shown that splitting the functional information between the components leads to better modeling of fMRI, over state-of-the-art methods.
在功能磁共振成像(fMRI)中,通过对数据进行欠采样来加快采集速度,可以改善空间-时间分辨率的权衡,并通过增加自由度来提高统计鲁棒性。从欠采样测量中高质量地重建 fMRI 数据需要对数据进行适当的建模。我们提出了一种基于将 fMRI 信号建模为周期性和固定秩分量之和的 fMRI 重建方法,以改善从欠采样测量中重建的效果。
所提出的方法将 fMRI 信号分解为具有固定秩的分量和由在时间傅里叶域中稀疏的周期性信号之和组成的分量。通过求解一个约束问题来进行数据重建,该约束问题对一个分量强制施加固定的、中等秩,对另一个分量施加有限数量的时间频率。我们的方法被称为 PEAR - 快速 fMRI 的周期性和固定秩分离。
实验结果包括纯粹的合成模拟、具有真实时间序列的模拟以及对真实 fMRI 数据集的回顾性欠采样。通过与真实数据进行比较,对基于地面真值的定量和视觉评估,将 PEAR 与另外两种用于从欠采样测量中重建 fMRI 的最新方法进行了比较。结果表明,PEAR 在估计时间序列和激活图方面的性能优于所比较的方法,在加速比为 R=8、10.66(模拟数据)和 R=6.66、10(真实数据)时。
本文提出了 PEAR,这是一种基于将 fMRI 信号分解为周期性和固定秩分量的欠采样 fMRI 重建方法。PEAR 的重建结果比使用基于固定秩的模型或传统的低秩+稀疏算法具有更高的保真度。我们已经表明,通过将功能信息分配到各个分量中,可以对 fMRI 进行更好的建模,优于现有的方法。