Biometrics Unit, Institut du Cancer Montpellier, 208 Avenue des Apothicaires, Montpellier, 34298, France.
Université de Montpellier, Place Eugène Bataillon, Montpellier, 34090, France.
BMC Med Res Methodol. 2017 Sep 26;17(1):148. doi: 10.1186/s12874-017-0410-9.
The use of health-related quality of life (HRQoL) as an endpoint in cancer clinical trials is growing rapidly. Hence, research into the statistical approaches used to analyze HRQoL data is of major importance, and could lead to a better understanding of the impact of treatments on the everyday life and care of patients. Amongst the models that are used for the longitudinal analysis of HRQoL, we focused on the mixed models from item response theory, to directly analyze raw data from questionnaires.
We reviewed the different item response models for ordinal responses, using a recent classification of generalized linear models for categorical data. Based on methodological and practical arguments, we then proposed a conceptual selection of these models for the longitudinal analysis of HRQoL in cancer clinical trials.
To complete comparison studies already present in the literature, we performed a simulation study based on random part of the mixed models, so to compare the linear mixed model classically used to the selected item response models. As expected, the sensitivity of the item response models to detect random effects with lower variance is better than that of the linear mixed model. We then used a cumulative item response model to perform a longitudinal analysis of HRQoL data from a cancer clinical trial.
Adjacent and cumulative item response models seem particularly suitable for HRQoL analysis. In the specific context of cancer clinical trials and the comparison between two groups of HRQoL data over time, the cumulative model seems to be the most suitable, given that it is able to generate a more complete set of results and gives an intuitive illustration of the data.
将健康相关生活质量(HRQoL)用作癌症临床试验的终点正在迅速发展。因此,研究用于分析 HRQoL 数据的统计方法非常重要,这可以帮助我们更好地了解治疗对患者日常生活和护理的影响。在用于分析 HRQoL 的纵向分析的模型中,我们重点关注了项目反应理论的混合模型,以便直接分析问卷的原始数据。
我们使用最近的分类广义线性模型来回顾用于有序反应的不同项目反应模型,这些模型用于分类数据。基于方法学和实际方面的考虑,我们随后提出了这些模型的概念性选择,以便在癌症临床试验的纵向分析中使用。
为了完成文献中已有的比较研究,我们基于混合模型的随机部分进行了一项模拟研究,以便将经典使用的线性混合模型与所选的项目反应模型进行比较。正如预期的那样,项目反应模型对检测方差较低的随机效应的敏感性要好于线性混合模型。然后,我们使用累积项目反应模型对癌症临床试验的 HRQoL 数据进行了纵向分析。
相邻和累积项目反应模型似乎特别适合 HRQoL 分析。在癌症临床试验的特定背景下,以及随着时间的推移比较两组 HRQoL 数据时,累积模型似乎是最合适的,因为它能够生成更完整的结果集,并直观地说明数据。