Suppr超能文献

从微电皮层电图 (μECoG) 记录中估计啮齿动物的皮质柱感觉网络。

Estimating cortical column sensory networks in rodents from micro-electrocorticograph (μECoG) recordings.

机构信息

Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706, USA.

Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706, USA.

出版信息

Neuroimage. 2017 Dec;163:342-357. doi: 10.1016/j.neuroimage.2017.09.043. Epub 2017 Sep 23.

Abstract

Micro-electrocorticograph (μECoG) arrays offer the flexibility to record local field potentials (LFPs) from the surface of the cortex, using high density electrodes that are sub-mm in diameter. Research to date has not provided conclusive evidence for the underlying signal generation of μECoG recorded LFPs, or if μECoG arrays can capture network activity from the cortex. We studied the pervading view of the LFP signal by exploring the spatial scale at which the LFP can be considered elemental. We investigated the underlying signal generation and ability to capture functional networks by implanting, μECoG arrays to record sensory-evoked potentials in four rats. The organization of the sensory cortex was studied by analyzing the sensory-evoked potentials with two distinct modeling techniques: (1) The volume conduction model, that models the electrode LFPs with an electrostatic representation, generated by a single cortical generator, and (2) the dynamic causal model (DCM), that models the electrode LFPs with a network model, whose activity is generated by multiple interacting cortical sources. The volume conduction approach modeled activity from electrodes separated < 1000 μm, with reasonable accuracy but a network model like DCM was required to accurately capture activity > 1500 μm. The extrinsic network component in DCM was determined to be essential for accurate modeling of observed potentials. These results all point to the presence of a sensory network, and that μECoG arrays are able to capture network activity in the neocortex. The estimated DCM network models the functional organization of the cortex, as signal generators for the μECoG recorded LFPs, and provides hypothesis-testing tools to explore the brain.

摘要

微电极皮层电图 (μECoG) 阵列提供了使用直径小于亚毫米的高密度电极从皮层表面记录局部场电位 (LFPs) 的灵活性。迄今为止的研究尚未提供确凿的证据证明记录的 LFPs 的 μECoG 潜在信号生成,或者 μECoG 阵列是否可以从皮层捕获网络活动。我们通过探索可以认为 LFP 是基本元素的空间尺度,研究了 LFP 信号的普遍看法。我们通过植入 μECoG 阵列来记录四只大鼠的感觉诱发电位,研究了潜在信号生成和捕获功能网络的能力。通过两种截然不同的建模技术分析感觉诱发电位来研究感觉皮层的组织:(1) 体积传导模型,用单皮质发生器产生的静电表示来模拟电极 LFPs;(2) 动态因果模型 (DCM),用网络模型模拟电极 LFPs,其活动由多个相互作用的皮质源产生。体积传导方法可以对分离 <1000 μm 的电极的活动进行建模,具有合理的准确性,但需要像 DCM 这样的网络模型才能准确捕获 >1500 μm 的活动。发现 DCM 中的外在网络成分对于准确建模观察到的电位是必不可少的。这些结果都表明存在感觉网络,并且 μECoG 阵列能够捕获新皮层中的网络活动。估计的 DCM 网络模型作为 μECoG 记录 LFPs 的信号发生器,对皮层的功能组织进行建模,并提供假设检验工具来探索大脑。

相似文献

1
Estimating cortical column sensory networks in rodents from micro-electrocorticograph (μECoG) recordings.
Neuroimage. 2017 Dec;163:342-357. doi: 10.1016/j.neuroimage.2017.09.043. Epub 2017 Sep 23.
3
A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings.
J Neurophysiol. 2014 Sep 15;112(6):1566-83. doi: 10.1152/jn.00179.2013. Epub 2014 Jun 11.
4
Multi-scale analysis of neural activity in humans: Implications for micro-scale electrocorticography.
Clin Neurophysiol. 2016 Jan;127(1):591-601. doi: 10.1016/j.clinph.2015.06.002. Epub 2015 Jun 11.
5
A low-cost, multiplexed μECoG system for high-density recordings in freely moving rodents.
J Neural Eng. 2016 Apr;13(2):026030-26030. doi: 10.1088/1741-2560/13/2/026030. Epub 2016 Mar 15.
6
High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays.
Front Neural Circuits. 2017 Apr 11;11:20. doi: 10.3389/fncir.2017.00020. eCollection 2017.
7
Columnar Localization and Laminar Origin of Cortical Surface Electrical Potentials.
J Neurosci. 2022 May 4;42(18):3733-3748. doi: 10.1523/JNEUROSCI.1787-21.2022. Epub 2022 Mar 24.
8
μECoG Recordings Through a Thinned Skull.
Front Neurosci. 2019 Oct 1;13:1017. doi: 10.3389/fnins.2019.01017. eCollection 2019.
9
A low-cost, scalable, current-sensing digital headstage for high channel count μECoG.
J Neural Eng. 2017 Apr;14(2):026009. doi: 10.1088/1741-2552/aa5a82. Epub 2017 Jan 19.
10

引用本文的文献

1

本文引用的文献

1
Delineating potential epileptogenic areas utilizing resting functional magnetic resonance imaging (fMRI) in epilepsy patients.
Neurocase. 2016 Aug;22(4):362-8. doi: 10.1080/13554794.2016.1195845. Epub 2016 Jun 30.
2
A DCM study of spectral asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the monkey.
Neuroimage. 2015 Mar;108:460-75. doi: 10.1016/j.neuroimage.2014.12.081. Epub 2015 Jan 10.
4
The effect of micro-ECoG substrate footprint on the meningeal tissue response.
J Neural Eng. 2014 Aug;11(4):046011. doi: 10.1088/1741-2560/11/4/046011. Epub 2014 Jun 18.
5
Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity.
J Neural Eng. 2014 Feb;11(1):016010. doi: 10.1088/1741-2560/11/1/016010. Epub 2014 Jan 20.
8
Canonical microcircuits for predictive coding.
Neuron. 2012 Nov 21;76(4):695-711. doi: 10.1016/j.neuron.2012.10.038.
9
The neocortical column.
Front Neuroanat. 2012 Jun 26;6:22. doi: 10.3389/fnana.2012.00005. eCollection 2012.
10
The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes.
Nat Rev Neurosci. 2012 May 18;13(6):407-20. doi: 10.1038/nrn3241.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验