Suppr超能文献

使用 Fugl-Meyer 评估法自动评估上肢运动功能障碍。

Automated Evaluation of Upper-Limb Motor Function Impairment Using Fugl-Meyer Assessment.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):125-134. doi: 10.1109/TNSRE.2017.2755667. Epub 2017 Sep 22.

Abstract

The Fugl-Meyer assessment (FMA) is the most popular instrument for evaluating upper extremity motor function in stroke patients. However, it is a labor-intensive and time-consuming method. This paper proposes a novel automated FMA system to overcome these limitations of the FMA. For automation, we used Kinect v2 and force sensing resistor sensors owing to their convenient installation as compared with body-worn sensors. Based on the linguistic guideline of the FMA, a rule-based binary logic classification algorithm was developed to assign FMA scores using the extracted features obtained from the sensors. The algorithm is appropriate for clinical use, because it is not based on machine learning, which requires additional learning processes with a large amount of clinical data. The proposed system was able to automate 79% of the FMA tests because of optimized sensor selection and the classification algorithm. In clinical trials conducted with nine stroke patients, the proposed system exhibited high scoring accuracy (92%) and time efficiency (85% reduction in clinicians' required time).

摘要

Fugl-Meyer 评估(FMA)是评估脑卒中患者上肢运动功能最常用的工具。然而,它是一种劳动密集型且耗时的方法。本文提出了一种新颖的自动 FMA 系统,以克服 FMA 的这些局限性。为了实现自动化,我们使用了 Kinect v2 和力敏电阻传感器,因为与穿戴式传感器相比,它们的安装更加方便。基于 FMA 的语言指导原则,开发了一种基于规则的二进制逻辑分类算法,使用从传感器获得的提取特征来分配 FMA 分数。该算法适用于临床应用,因为它不是基于机器学习,机器学习需要使用大量的临床数据进行额外的学习过程。由于优化了传感器选择和分类算法,该系统能够自动完成 79%的 FMA 测试。在对 9 名脑卒中患者进行的临床试验中,该系统表现出了较高的评分准确性(92%)和时间效率(减少了 85%的临床医生所需时间)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验