Suppr超能文献

在不造成双链 DNA 断裂的情况下编辑基因组。

Editing the Genome Without Double-Stranded DNA Breaks.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.

Broad Institute of MIT and Harvard , Cambridge, Massachusetts 021413, United States.

出版信息

ACS Chem Biol. 2018 Feb 16;13(2):383-388. doi: 10.1021/acschembio.7b00710. Epub 2017 Oct 9.

Abstract

Genome editing methods have commonly relied on the initial introduction of double-stranded DNA breaks (DSBs), resulting in stochastic insertions, deletions, and translocations at the target genomic locus. To achieve gene correction, these methods typically require the introduction of exogenous DNA repair templates and low-efficiency homologous recombination processes. In this review, we describe alternative, mechanistically motivated strategies to perform chemistry on the genome of unmodified cells without introducing DSBs. One such strategy, base editing, uses chemical and biological insights to directly and permanently convert one target base pair to another. Despite its recent introduction, base editing has already enabled a number of new capabilities and applications in the genome editing community. We summarize these advances here and discuss the new possibilities that this method has unveiled, concluding with a brief analysis of future prospects for genome and transcriptome editing without double-stranded DNA cleavage.

摘要

基因组编辑方法通常依赖于双链 DNA 断裂(DSB)的初始引入,从而导致靶基因组位置的随机插入、缺失和易位。为了实现基因校正,这些方法通常需要引入外源 DNA 修复模板和低效的同源重组过程。在这篇综述中,我们描述了在不引入 DSB 的情况下对未经修饰的细胞基因组进行化学修饰的替代策略。其中一种策略,碱基编辑,利用化学和生物学的见解,直接且永久地将一个靶碱基对转换为另一个碱基对。尽管它是最近才提出的,但碱基编辑已经在基因组编辑领域中实现了许多新的功能和应用。我们在这里总结了这些进展,并讨论了该方法所揭示的新可能性,最后简要分析了在不进行双链 DNA 切割的情况下进行基因组和转录组编辑的未来前景。

相似文献

1
Editing the Genome Without Double-Stranded DNA Breaks.
ACS Chem Biol. 2018 Feb 16;13(2):383-388. doi: 10.1021/acschembio.7b00710. Epub 2017 Oct 9.
2
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
Nature. 2016 May 19;533(7603):420-4. doi: 10.1038/nature17946. Epub 2016 Apr 20.
3
Precision genome editing in the CRISPR era.
Biochem Cell Biol. 2017 Apr;95(2):187-201. doi: 10.1139/bcb-2016-0137. Epub 2016 Sep 29.
6
Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans.
Methods. 2017 May 15;121-122:86-93. doi: 10.1016/j.ymeth.2017.03.023. Epub 2017 Apr 7.
7
Base editing: precision chemistry on the genome and transcriptome of living cells.
Nat Rev Genet. 2018 Dec;19(12):770-788. doi: 10.1038/s41576-018-0059-1.
8
Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes.
Mol Cell. 2017 Oct 5;68(1):26-43. doi: 10.1016/j.molcel.2017.09.029.
9
Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion.
Nat Biotechnol. 2017 May;35(5):438-440. doi: 10.1038/nbt.3811. Epub 2017 Feb 27.
10
CRISPR base editors: genome editing without double-stranded breaks.
Biochem J. 2018 Jun 11;475(11):1955-1964. doi: 10.1042/BCJ20170793.

引用本文的文献

3
Advancing CRISPR base editing technology through innovative strategies and ideas.
Sci China Life Sci. 2025 Mar;68(3):610-627. doi: 10.1007/s11427-024-2699-5. Epub 2024 Sep 2.
4
Genetic and functional correction of argininosuccinate lyase deficiency using CRISPR adenine base editors.
Am J Hum Genet. 2024 Apr 4;111(4):714-728. doi: 10.1016/j.ajhg.2024.03.004.
5
Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy.
Front Chem. 2023 Sep 28;11:1259435. doi: 10.3389/fchem.2023.1259435. eCollection 2023.
9
Immune Editing: Overcoming Immune Barriers in Stem Cell Transplantation.
Curr Stem Cell Rep. 2022;8(4):206-218. doi: 10.1007/s40778-022-00221-0. Epub 2022 Nov 8.
10
CRISPR/Cas systems usher in a new era of disease treatment and diagnosis.
Mol Biomed. 2022 Oct 14;3(1):31. doi: 10.1186/s43556-022-00095-y.

本文引用的文献

1
CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons.
Mol Cell. 2017 Sep 21;67(6):1068-1079.e4. doi: 10.1016/j.molcel.2017.08.008. Epub 2017 Sep 7.
3
Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system.
Nat Commun. 2017 Jul 25;8(1):118. doi: 10.1038/s41467-017-00175-6.
6
CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.
Nat Methods. 2017 Jul;14(7):710-712. doi: 10.1038/nmeth.4327. Epub 2017 Jun 5.
7
Genome-wide target specificities of CRISPR RNA-guided programmable deaminases.
Nat Biotechnol. 2017 May;35(5):475-480. doi: 10.1038/nbt.3852. Epub 2017 Apr 10.
8
CRISPR-Cas9 Structures and Mechanisms.
Annu Rev Biophys. 2017 May 22;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub 2017 Mar 30.
9
Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion.
Nat Biotechnol. 2017 May;35(5):441-443. doi: 10.1038/nbt.3833. Epub 2017 Mar 27.
10
Highly efficient RNA-guided base editing in mouse embryos.
Nat Biotechnol. 2017 May;35(5):435-437. doi: 10.1038/nbt.3816. Epub 2017 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验