Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.
Broad Institute of MIT and Harvard , Cambridge, Massachusetts 021413, United States.
ACS Chem Biol. 2018 Feb 16;13(2):383-388. doi: 10.1021/acschembio.7b00710. Epub 2017 Oct 9.
Genome editing methods have commonly relied on the initial introduction of double-stranded DNA breaks (DSBs), resulting in stochastic insertions, deletions, and translocations at the target genomic locus. To achieve gene correction, these methods typically require the introduction of exogenous DNA repair templates and low-efficiency homologous recombination processes. In this review, we describe alternative, mechanistically motivated strategies to perform chemistry on the genome of unmodified cells without introducing DSBs. One such strategy, base editing, uses chemical and biological insights to directly and permanently convert one target base pair to another. Despite its recent introduction, base editing has already enabled a number of new capabilities and applications in the genome editing community. We summarize these advances here and discuss the new possibilities that this method has unveiled, concluding with a brief analysis of future prospects for genome and transcriptome editing without double-stranded DNA cleavage.
基因组编辑方法通常依赖于双链 DNA 断裂(DSB)的初始引入,从而导致靶基因组位置的随机插入、缺失和易位。为了实现基因校正,这些方法通常需要引入外源 DNA 修复模板和低效的同源重组过程。在这篇综述中,我们描述了在不引入 DSB 的情况下对未经修饰的细胞基因组进行化学修饰的替代策略。其中一种策略,碱基编辑,利用化学和生物学的见解,直接且永久地将一个靶碱基对转换为另一个碱基对。尽管它是最近才提出的,但碱基编辑已经在基因组编辑领域中实现了许多新的功能和应用。我们在这里总结了这些进展,并讨论了该方法所揭示的新可能性,最后简要分析了在不进行双链 DNA 切割的情况下进行基因组和转录组编辑的未来前景。