Suppr超能文献

单颗粒冷冻电子显微镜揭示核糖体二聚化的一般机制。

A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy.

作者信息

Franken Linda E, Oostergetel Gert T, Pijning Tjaard, Puri Pranav, Arkhipova Valentina, Boekema Egbert J, Poolman Bert, Guskov Albert

机构信息

Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.

Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.

出版信息

Nat Commun. 2017 Sep 28;8(1):722. doi: 10.1038/s41467-017-00718-x.

Abstract

Bacteria downregulate their ribosomal activity through dimerization of 70S ribosomes, yielding inactive 100S complexes. In Escherichia coli, dimerization is mediated by the hibernation promotion factor (HPF) and ribosome modulation factor. Here we report the cryo-electron microscopy study on 100S ribosomes from Lactococcus lactis and a dimerization mechanism involving a single protein: HPF. The N-terminal domain of HPF binds at the same site as HPF in Escherichia coli 100S ribosomes. Contrary to ribosome modulation factor, the C-terminal domain of HPF binds exactly at the dimer interface. Furthermore, ribosomes from Lactococcus lactis do not undergo conformational changes in the 30S head domains upon binding of HPF, and the Shine-Dalgarno sequence and mRNA entrance tunnel remain accessible. Ribosome activity is blocked by HPF due to the inhibition of mRNA recognition by the platform binding center. Phylogenetic analysis of HPF proteins suggests that HPF-mediated dimerization is a widespread mechanism of ribosome hibernation in bacteria.When bacteria enter the stationary growth phase, protein translation is suppressed via the dimerization of 70S ribosomes into inactive complexes. Here the authors provide a structural basis for how the dual domain hibernation promotion factor promotes ribosome dimerization and hibernation in bacteria.

摘要

细菌通过70S核糖体二聚化来下调其核糖体活性,形成无活性的100S复合物。在大肠杆菌中,二聚化由休眠促进因子(HPF)和核糖体调控因子介导。本文我们报道了对乳酸乳球菌100S核糖体的冷冻电镜研究以及一种涉及单一蛋白质HPF的二聚化机制。HPF的N端结构域与大肠杆菌100S核糖体中HPF的结合位点相同。与核糖体调控因子不同,HPF的C端结构域恰好结合在二聚体界面处。此外,乳酸乳球菌的核糖体在结合HPF后30S头部结构域不会发生构象变化,且Shine-Dalgarno序列和mRNA进入通道仍然可及。由于平台结合中心对mRNA识别的抑制,核糖体活性被HPF阻断。HPF蛋白的系统发育分析表明,HPF介导的二聚化是细菌中核糖体休眠的一种广泛机制。当细菌进入稳定生长期时,蛋白质翻译通过70S核糖体二聚化为无活性复合物而受到抑制。本文作者为双结构域休眠促进因子如何促进细菌中的核糖体二聚化和休眠提供了结构基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab30/5620043/ba0112810834/41467_2017_718_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验