Li Wanqing, Xiao An, Li Yanhong, Yu Hai, Chen Xi
Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
Carbohydr Res. 2017 Nov 8;451:51-58. doi: 10.1016/j.carres.2017.09.003. Epub 2017 Sep 18.
O-Acetylation of sialic acid (Sia) modulates its recognition by sialic acid-binding proteins and plays an important role in biological and pathological processes. 9-O-Acetylation is the most common modification of sialic acid in human. However, study of O-acetylated sialoglycans is hampered due to the instability of O-acetyl group towards pH changes and sensitivity to esterases. Our previous studies demonstrated a chemical biology method to this problem by replacing the oxygen atom in the C9 ester group of sialic acid by a nitrogen to form an amide. Here, we synthesized a library of sixteen new 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc)-containing α2-3- and α2-6-linked sialosides with various underlying glycans using efficient one-pot three-enzyme (OP3E) sialylation systems. Neu5Ac9NAc-containing compounds with a para-nitrophenol aglycon have been used together with their 9-O-acetyl analogs in microtiter plate-based high-throughput substrate specificity studies of nine different sialidases including those from humans and bacteria. In general, similar to 9-O-acetylation, 9-N-acetyl modification of sialic acid in the substrates lowers sialic acid-cleavage activity of most sialidases. In most cases, Neu5Ac9NAc is a good analog of 9-O-acetyl sialic acid. However, exceptions do exist. For example, 9-N- and 9-O-acetyl modifications have different effects on the sialosides cleave efficiencies of a commercially available C. perfringens sialidase as well as recombinant Streptococcus pneumoniae sialidase SpNanC and Bifidobacterium infantis sialidase BiNanH2. The mechanism for the difference awaits further investigation.
唾液酸(Sia)的O-乙酰化调节其与唾液酸结合蛋白的识别,并在生物和病理过程中发挥重要作用。9-O-乙酰化是人类唾液酸最常见的修饰。然而,由于O-乙酰基对pH变化不稳定且对酯酶敏感,O-乙酰化唾液酸聚糖的研究受到阻碍。我们之前的研究通过将唾液酸C9酯基中的氧原子替换为氮原子形成酰胺,展示了一种解决此问题的化学生物学方法。在此,我们使用高效的一锅三酶(OP3E)唾液酸化系统,合成了一个包含十六种新的含有9-乙酰氨基-9-脱氧-N-乙酰神经氨酸(Neu5Ac9NAc)的α2-3-和α2-6-连接唾液酸苷的文库,这些唾液酸苷具有各种潜在聚糖。含有对硝基苯酚苷元的含Neu5Ac9NAc化合物已与其9-O-乙酰类似物一起用于基于微孔板的九种不同唾液酸酶(包括来自人类和细菌的唾液酸酶)的高通量底物特异性研究。一般来说,与9-O-乙酰化类似,底物中唾液酸的9-N-乙酰修饰会降低大多数唾液酸酶的唾液酸切割活性。在大多数情况下,Neu5Ac9NAc是9-O-乙酰唾液酸的良好类似物。然而,例外情况确实存在。例如,9-N-和9-O-乙酰修饰对市售产气荚膜梭菌唾液酸酶以及重组肺炎链球菌唾液酸酶SpNanC和婴儿双歧杆菌唾液酸酶BiNanH2的唾液酸苷切割效率有不同影响。这种差异的机制有待进一步研究。