Abanto-Valle Carlos A, Langrock Roland, Chen Ming-Hui, Cardoso Michel V
Department of Statistics, Federal University of Rio de Janeiro, Caixa Postal 68530, CEP: 21945-970, Rio de Janeiro, Brazil.
Department of Business Administration and Economics, Bielefeld University, Postfach 10 01 31, 33501 Bielefeld, Germany.
Appl Stoch Models Bus Ind. 2017 Jul-Aug;33(4):394-408. doi: 10.1002/asmb.2246. Epub 2017 Mar 13.
In this article, we introduce a likelihood-based estimation method for the stochastic volatility in mean (SVM) model with scale mixtures of normal (SMN) distributions (Abanto-Valle et al., 2012). Our estimation method is based on the fact that the powerful hidden Markov model (HMM) machinery can be applied in order to evaluate an arbitrarily accurate approximation of the likelihood of an SVM model with SMN distributions. The method is based on the proposal of Langrock et al. (2012) and makes explicit the useful link between HMMs and SVM models with SMN distributions. Likelihood-based estimation of the parameters of stochastic volatility models in general, and SVM models with SMN distributions in particular, is usually regarded as challenging as the likelihood is a high-dimensional multiple integral. However, the HMM approximation, which is very easy to implement, makes numerical maximum of the likelihood feasible and leads to simple formulae for forecast distributions, for computing appropriately defined residuals, and for decoding, i.e., estimating the volatility of the process.
在本文中,我们介绍了一种基于似然性的估计方法,用于具有正态分布尺度混合(SMN)的均值随机波动率(SVM)模型(阿班托 - 瓦莱等人,2012年)。我们的估计方法基于这样一个事实,即强大的隐马尔可夫模型(HMM)机制可用于评估具有SMN分布的SVM模型似然性的任意精确近似。该方法基于朗罗克等人(2012年)的提议,并明确了HMM与具有SMN分布的SVM模型之间的有用联系。一般来说,基于似然性的随机波动率模型参数估计,特别是具有SMN分布的SVM模型,通常被认为具有挑战性,因为似然性是一个高维多重积分。然而,易于实现的HMM近似使得似然性的数值最大化可行,并得出用于预测分布、计算适当定义的残差以及解码(即估计过程的波动率)的简单公式。