Suppr超能文献

具有重尾分布的均值模型中随机波动率的最大似然估计。

Maximum likelihood estimation for stochastic volatility in mean models with heavy-tailed distributions.

作者信息

Abanto-Valle Carlos A, Langrock Roland, Chen Ming-Hui, Cardoso Michel V

机构信息

Department of Statistics, Federal University of Rio de Janeiro, Caixa Postal 68530, CEP: 21945-970, Rio de Janeiro, Brazil.

Department of Business Administration and Economics, Bielefeld University, Postfach 10 01 31, 33501 Bielefeld, Germany.

出版信息

Appl Stoch Models Bus Ind. 2017 Jul-Aug;33(4):394-408. doi: 10.1002/asmb.2246. Epub 2017 Mar 13.

Abstract

In this article, we introduce a likelihood-based estimation method for the stochastic volatility in mean (SVM) model with scale mixtures of normal (SMN) distributions (Abanto-Valle et al., 2012). Our estimation method is based on the fact that the powerful hidden Markov model (HMM) machinery can be applied in order to evaluate an arbitrarily accurate approximation of the likelihood of an SVM model with SMN distributions. The method is based on the proposal of Langrock et al. (2012) and makes explicit the useful link between HMMs and SVM models with SMN distributions. Likelihood-based estimation of the parameters of stochastic volatility models in general, and SVM models with SMN distributions in particular, is usually regarded as challenging as the likelihood is a high-dimensional multiple integral. However, the HMM approximation, which is very easy to implement, makes numerical maximum of the likelihood feasible and leads to simple formulae for forecast distributions, for computing appropriately defined residuals, and for decoding, i.e., estimating the volatility of the process.

摘要

在本文中,我们介绍了一种基于似然性的估计方法,用于具有正态分布尺度混合(SMN)的均值随机波动率(SVM)模型(阿班托 - 瓦莱等人,2012年)。我们的估计方法基于这样一个事实,即强大的隐马尔可夫模型(HMM)机制可用于评估具有SMN分布的SVM模型似然性的任意精确近似。该方法基于朗罗克等人(2012年)的提议,并明确了HMM与具有SMN分布的SVM模型之间的有用联系。一般来说,基于似然性的随机波动率模型参数估计,特别是具有SMN分布的SVM模型,通常被认为具有挑战性,因为似然性是一个高维多重积分。然而,易于实现的HMM近似使得似然性的数值最大化可行,并得出用于预测分布、计算适当定义的残差以及解码(即估计过程的波动率)的简单公式。

相似文献

1
Maximum likelihood estimation for stochastic volatility in mean models with heavy-tailed distributions.
Appl Stoch Models Bus Ind. 2017 Jul-Aug;33(4):394-408. doi: 10.1002/asmb.2246. Epub 2017 Mar 13.
2
Robust Bayesian Analysis of Heavy-tailed Stochastic Volatility Models using Scale Mixtures of Normal Distributions.
Comput Stat Data Anal. 2010 Dec 1;54(12):2883-2898. doi: 10.1016/j.csda.2009.06.011.
3
Prediction of 24-hour-average PM(2.5) concentrations using a hidden Markov model with different emission distributions in Northern California.
Sci Total Environ. 2013 Jan 15;443:93-103. doi: 10.1016/j.scitotenv.2012.10.070. Epub 2012 Nov 23.
5
Hidden Markov models with nonelliptically contoured state densities.
IEEE Trans Pattern Anal Mach Intell. 2010 Dec;32(12):2297-304. doi: 10.1109/TPAMI.2010.153.
6
Nonparametric identification and maximum likelihood estimation for hidden Markov models.
Biometrika. 2016 Jun;103(2):423-434. doi: 10.1093/biomet/asw001. Epub 2016 Mar 28.
8
Adaptive Mixture Modelling Metropolis Methods for Bayesian Analysis of Non-linear State-Space Models.
J Comput Graph Stat. 2010 Jun 1;19(2):260-280. doi: 10.1198/jcgs.2010.08117.
9
Variational Bayesian Learning of Generalized Dirichlet-Based Hidden Markov Models Applied to Unusual Events Detection.
IEEE Trans Neural Netw Learn Syst. 2019 Apr;30(4):1034-1047. doi: 10.1109/TNNLS.2018.2855699. Epub 2018 Aug 8.
10
Fast inference for robust nonlinear mixed-effects models.
J Appl Stat. 2022 Feb 9;50(7):1568-1591. doi: 10.1080/02664763.2022.2034141. eCollection 2023.

本文引用的文献

1
Robust Bayesian Analysis of Heavy-tailed Stochastic Volatility Models using Scale Mixtures of Normal Distributions.
Comput Stat Data Anal. 2010 Dec 1;54(12):2883-2898. doi: 10.1016/j.csda.2009.06.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验