Nyberg Kendra D, Hu Kenneth H, Kleinman Sara H, Khismatullin Damir B, Butte Manish J, Rowat Amy C
Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Department of Bioengineering, University of California, Los Angeles, California.
Department of Physics, Stanford University, Stanford, California.
Biophys J. 2017 Oct 3;113(7):1574-1584. doi: 10.1016/j.bpj.2017.06.073.
Advances in methods that determine cell mechanical phenotype, or mechanotype, have demonstrated the utility of biophysical markers in clinical and research applications ranging from cancer diagnosis to stem cell enrichment. Here, we introduce quantitative deformability cytometry (q-DC), a method for rapid, calibrated, single-cell mechanotyping. We track changes in cell shape as cells deform into microfluidic constrictions, and we calibrate the mechanical stresses using gel beads. We observe that time-dependent strain follows power-law rheology, enabling single-cell measurements of apparent elastic modulus, E, and power-law exponent, β. To validate our method, we mechanotype human promyelocytic leukemia (HL-60) cells and thereby confirm q-DC measurements of E = 0.53 ± 0.04 kPa. We also demonstrate that q-DC is sensitive to pharmacological perturbations of the cytoskeleton as well as differences in the mechanotype of human breast cancer cell lines (E = 2.1 ± 0.1 and 0.80 ± 0.19 kPa for MCF-7 and MDA-MB-231 cells). To establish an operational framework for q-DC, we investigate the effects of applied stress and cell/pore-size ratio on mechanotype measurements. We show that E increases with applied stress, which is consistent with stress stiffening behavior of cells. We also find that E increases for larger cell/pore-size ratios, even when the same applied stress is maintained; these results indicate strain stiffening and/or dependence of mechanotype on deformation depth. Taken together, the calibrated measurements enabled by q-DC should advance applications of cell mechanotype in basic research and clinical settings.
确定细胞机械表型(或机械型)的方法进展已证明生物物理标志物在从癌症诊断到干细胞富集等临床和研究应用中的效用。在此,我们介绍定量变形性细胞术(q-DC),这是一种用于快速、校准的单细胞机械分型的方法。当细胞变形进入微流体收缩通道时,我们跟踪细胞形状的变化,并使用凝胶珠校准机械应力。我们观察到时间依赖性应变遵循幂律流变学,从而能够对表观弹性模量E和幂律指数β进行单细胞测量。为了验证我们的方法,我们对人早幼粒细胞白血病(HL-60)细胞进行了机械分型,从而证实了q-DC测量得到的E = 0.53±0.04千帕。我们还证明q-DC对细胞骨架的药理学扰动以及人乳腺癌细胞系机械型的差异敏感(MCF-7和MDA-MB-231细胞的E分别为2.1±0.1和0.80±0.19千帕)。为了建立q-DC的操作框架,我们研究了施加应力和细胞/孔径比对机械型测量的影响。我们表明E随施加应力增加,这与细胞的应力硬化行为一致。我们还发现,即使保持相同的施加应力,对于更大的细胞/孔径比,E也会增加;这些结果表明应变硬化和/或机械型对变形深度的依赖性。综上所述,q-DC实现的校准测量应能推动细胞机械型在基础研究和临床环境中的应用。