Suppr超能文献

定量变形性细胞术:细胞力学特性的快速、校准测量

Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.

作者信息

Nyberg Kendra D, Hu Kenneth H, Kleinman Sara H, Khismatullin Damir B, Butte Manish J, Rowat Amy C

机构信息

Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Department of Bioengineering, University of California, Los Angeles, California.

Department of Physics, Stanford University, Stanford, California.

出版信息

Biophys J. 2017 Oct 3;113(7):1574-1584. doi: 10.1016/j.bpj.2017.06.073.

Abstract

Advances in methods that determine cell mechanical phenotype, or mechanotype, have demonstrated the utility of biophysical markers in clinical and research applications ranging from cancer diagnosis to stem cell enrichment. Here, we introduce quantitative deformability cytometry (q-DC), a method for rapid, calibrated, single-cell mechanotyping. We track changes in cell shape as cells deform into microfluidic constrictions, and we calibrate the mechanical stresses using gel beads. We observe that time-dependent strain follows power-law rheology, enabling single-cell measurements of apparent elastic modulus, E, and power-law exponent, β. To validate our method, we mechanotype human promyelocytic leukemia (HL-60) cells and thereby confirm q-DC measurements of E = 0.53 ± 0.04 kPa. We also demonstrate that q-DC is sensitive to pharmacological perturbations of the cytoskeleton as well as differences in the mechanotype of human breast cancer cell lines (E = 2.1 ± 0.1 and 0.80 ± 0.19 kPa for MCF-7 and MDA-MB-231 cells). To establish an operational framework for q-DC, we investigate the effects of applied stress and cell/pore-size ratio on mechanotype measurements. We show that E increases with applied stress, which is consistent with stress stiffening behavior of cells. We also find that E increases for larger cell/pore-size ratios, even when the same applied stress is maintained; these results indicate strain stiffening and/or dependence of mechanotype on deformation depth. Taken together, the calibrated measurements enabled by q-DC should advance applications of cell mechanotype in basic research and clinical settings.

摘要

确定细胞机械表型(或机械型)的方法进展已证明生物物理标志物在从癌症诊断到干细胞富集等临床和研究应用中的效用。在此,我们介绍定量变形性细胞术(q-DC),这是一种用于快速、校准的单细胞机械分型的方法。当细胞变形进入微流体收缩通道时,我们跟踪细胞形状的变化,并使用凝胶珠校准机械应力。我们观察到时间依赖性应变遵循幂律流变学,从而能够对表观弹性模量E和幂律指数β进行单细胞测量。为了验证我们的方法,我们对人早幼粒细胞白血病(HL-60)细胞进行了机械分型,从而证实了q-DC测量得到的E = 0.53±0.04千帕。我们还证明q-DC对细胞骨架的药理学扰动以及人乳腺癌细胞系机械型的差异敏感(MCF-7和MDA-MB-231细胞的E分别为2.1±0.1和0.80±0.19千帕)。为了建立q-DC的操作框架,我们研究了施加应力和细胞/孔径比对机械型测量的影响。我们表明E随施加应力增加,这与细胞的应力硬化行为一致。我们还发现,即使保持相同的施加应力,对于更大的细胞/孔径比,E也会增加;这些结果表明应变硬化和/或机械型对变形深度的依赖性。综上所述,q-DC实现的校准测量应能推动细胞机械型在基础研究和临床环境中的应用。

相似文献

1
Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
Biophys J. 2017 Oct 3;113(7):1574-1584. doi: 10.1016/j.bpj.2017.06.073.
2
The physical origins of transit time measurements for rapid, single cell mechanotyping.
Lab Chip. 2016 Aug 16;16(17):3330-9. doi: 10.1039/c6lc00169f.
3
Microfluidic Mechanotyping of a Single Cell with Two Consecutive Constrictions of Different Sizes and an Electrical Detection System.
Anal Chem. 2019 Oct 15;91(20):12890-12899. doi: 10.1021/acs.analchem.9b02818. Epub 2019 Sep 11.
4
5
Stiffness of pancreatic cancer cells is associated with increased invasive potential.
Integr Biol (Camb). 2016 Dec 5;8(12):1232-1245. doi: 10.1039/c6ib00135a.
7
A microfluidic technique to probe cell deformability.
J Vis Exp. 2014 Sep 3(91):e51474. doi: 10.3791/51474.
8
Multiparameter cell-tracking intrinsic cytometry for single-cell characterization.
Lab Chip. 2018 May 15;18(10):1430-1439. doi: 10.1039/c8lc00240a.
9
Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis.
Anal Bioanal Chem. 2014 Mar;406(7):1855-65. doi: 10.1007/s00216-013-7598-2. Epub 2014 Jan 10.
10
Deformability-based cell classification and enrichment using inertial microfluidics.
Lab Chip. 2011 Mar 7;11(5):912-20. doi: 10.1039/c0lc00595a. Epub 2011 Jan 27.

引用本文的文献

1
Viscoelastic recovery times of chondrocytes measured using a novel 3D-printed microfluidic device.
Meas Sci Technol. 2025 Aug 31;36(8):085701. doi: 10.1088/1361-6501/adf65a. Epub 2025 Aug 12.
2
Deep learning assisted mechanotyping of individual cells through repeated deformations and relaxations in undulating channels.
Biomicrofluidics. 2022 Feb 16;16(1):014104. doi: 10.1063/5.0077432. eCollection 2022 Jan.
3
Characterization of cellular wound resistance in the giant ciliate .
bioRxiv. 2025 Jun 25:2025.06.23.661154. doi: 10.1101/2025.06.23.661154.
4
Image-based evaluation of single-cell mechanics using deep learning.
Cell Regen. 2025 Jun 5;14(1):21. doi: 10.1186/s13619-025-00239-9.
5
Viscoelasticity of ECM and cells-origin, measurement and correlation.
Mechanobiol Med. 2024 Jul 31;2(4):100082. doi: 10.1016/j.mbm.2024.100082. eCollection 2024 Dec.
6
Rheological transition driven by matrix makes cancer spheroids resilient under confinement.
Life Sci Alliance. 2025 Mar 27;8(6). doi: 10.26508/lsa.202402601. Print 2025 Jun.
7
Conditions for a microfluidic creep experiment for microparticles using a cross-slot extensional flow device.
Biomicrofluidics. 2025 Mar 6;19(2):024102. doi: 10.1063/5.0239475. eCollection 2025 Mar.
8
Noninvasive characterization of oocyte deformability in microconstrictions.
Sci Adv. 2025 Feb 21;11(8):eadr9869. doi: 10.1126/sciadv.adr9869. Epub 2025 Feb 19.
9
Cellular and Nuclear Forces: An Overview.
Methods Mol Biol. 2025;2881:3-39. doi: 10.1007/978-1-0716-4280-1_1.
10
Real-time viscoelastic deformability cytometry: High-throughput mechanical phenotyping of liquid and solid biopsies.
Sci Adv. 2024 Dec 6;10(49):eabj1133. doi: 10.1126/sciadv.abj1133. Epub 2024 Dec 4.

本文引用的文献

1
Unbiased High-Precision Cell Mechanical Measurements with Microconstrictions.
Biophys J. 2017 Apr 11;112(7):1472-1480. doi: 10.1016/j.bpj.2017.02.018.
2
Stiffness of pancreatic cancer cells is associated with increased invasive potential.
Integr Biol (Camb). 2016 Dec 5;8(12):1232-1245. doi: 10.1039/c6ib00135a.
3
The physical origins of transit time measurements for rapid, single cell mechanotyping.
Lab Chip. 2016 Aug 16;16(17):3330-9. doi: 10.1039/c6lc00169f.
7
Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.
Nanotechnology. 2016 Feb 12;27(6):065102. doi: 10.1088/0957-4484/27/6/065102. Epub 2015 Dec 18.
8
Deformability of Tumor Cells versus Blood Cells.
Sci Rep. 2015 Dec 18;5:18542. doi: 10.1038/srep18542.
9
Screening cell mechanotype by parallel microfiltration.
Sci Rep. 2015 Dec 2;5:17595. doi: 10.1038/srep17595.
10
Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment.
Biophys J. 2015 Nov 17;109(10):2023-36. doi: 10.1016/j.bpj.2015.09.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验