Suppr超能文献

基于静息态功能磁共振成像的人脑皮质局部-整体分区。

Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI.

机构信息

Department of Electrical and Computer Engineering, ASTAR-NUS Clinical Imaging Research Centre, Singapore Institute for Neurotechnology and Memory Networks Program, National University of Singapore, Singapore.

VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA.

出版信息

Cereb Cortex. 2018 Sep 1;28(9):3095-3114. doi: 10.1093/cercor/bhx179.

Abstract

A central goal in systems neuroscience is the parcellation of the cerebral cortex into discrete neurobiological "atoms". Resting-state functional magnetic resonance imaging (rs-fMRI) offers the possibility of in vivo human cortical parcellation. Almost all previous parcellations relied on 1 of 2 approaches. The local gradient approach detects abrupt transitions in functional connectivity patterns. These transitions potentially reflect cortical areal boundaries defined by histology or visuotopic fMRI. By contrast, the global similarity approach clusters similar functional connectivity patterns regardless of spatial proximity, resulting in parcels with homogeneous (similar) rs-fMRI signals. Here, we propose a gradient-weighted Markov Random Field (gwMRF) model integrating local gradient and global similarity approaches. Using task-fMRI and rs-fMRI across diverse acquisition protocols, we found gwMRF parcellations to be more homogeneous than 4 previously published parcellations. Furthermore, gwMRF parcellations agreed with the boundaries of certain cortical areas defined using histology and visuotopic fMRI. Some parcels captured subareal (somatotopic and visuotopic) features that likely reflect distinct computational units within known cortical areas. These results suggest that gwMRF parcellations reveal neurobiologically meaningful features of brain organization and are potentially useful for future applications requiring dimensionality reduction of voxel-wise fMRI data. Multiresolution parcellations generated from 1489 participants are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal).

摘要

大脑皮层的离散神经生物学“原子”划分是系统神经科学的一个核心目标。静息态功能磁共振成像(rs-fMRI)为在体人类皮质划分提供了可能。几乎所有以前的划分都依赖于以下两种方法之一。局部梯度方法检测功能连接模式的突然转变。这些转变可能反映了由组织学或视拓扑 fMRI 定义的皮质区域边界。相比之下,全局相似性方法聚类相似的功能连接模式,而不考虑空间接近度,从而产生具有均匀(相似)rs-fMRI 信号的区室。在这里,我们提出了一种梯度加权马尔可夫随机场(gwMRF)模型,该模型集成了局部梯度和全局相似性方法。使用跨多种采集方案的任务 fMRI 和 rs-fMRI,我们发现 gwMRF 分区比以前发表的 4 种分区更均匀。此外,gwMRF 分区与使用组织学和视拓扑 fMRI 定义的某些皮质区域的边界一致。一些区室捕获了亚区(躯体和视拓扑)特征,这可能反映了已知皮质区域内的不同计算单元。这些结果表明,gwMRF 分区揭示了大脑组织的神经生物学有意义的特征,并且对于需要降低体素 fMRI 数据维度的未来应用可能是有用的。从 1489 名参与者生成的多分辨率分区可在(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal)上公开获取。

相似文献

1
Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI.
Cereb Cortex. 2018 Sep 1;28(9):3095-3114. doi: 10.1093/cercor/bhx179.
2
Homotopic local-global parcellation of the human cerebral cortex from resting-state functional connectivity.
Neuroimage. 2023 Jun;273:120010. doi: 10.1016/j.neuroimage.2023.120010. Epub 2023 Mar 12.
3
Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior.
Cereb Cortex. 2021 Aug 26;31(10):4477-4500. doi: 10.1093/cercor/bhab101.
4
Spatially constrained hierarchical parcellation of the brain with resting-state fMRI.
Neuroimage. 2013 Aug 1;76:313-24. doi: 10.1016/j.neuroimage.2013.03.024. Epub 2013 Mar 21.
6
A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
Magn Reson Imaging. 2016 Feb;34(2):209-18. doi: 10.1016/j.mri.2015.10.036. Epub 2015 Oct 31.
7
Robust brain parcellation using sparse representation on resting-state fMRI.
Brain Struct Funct. 2015 Nov;220(6):3565-79. doi: 10.1007/s00429-014-0874-x. Epub 2014 Aug 26.
8
Joint Spectral Decomposition for the Parcellation of the Human Cerebral Cortex Using Resting-State fMRI.
Inf Process Med Imaging. 2015;24:85-97. doi: 10.1007/978-3-319-19992-4_7.
9
How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
Neuroimage. 2017 Feb 15;147:726-735. doi: 10.1016/j.neuroimage.2016.11.065. Epub 2016 Nov 27.
10
Evaluating brain parcellations using the distance-controlled boundary coefficient.
Hum Brain Mapp. 2022 Aug 15;43(12):3706-3720. doi: 10.1002/hbm.25878. Epub 2022 Apr 22.

引用本文的文献

1
Brain network controllability in genetic risk, childhood abuse, and adult anxiety.
Eur J Psychotraumatol. 2025 Dec;16(1):2551953. doi: 10.1080/20008066.2025.2551953. Epub 2025 Sep 12.
2
Neuropathology determines whether brain systems segregation benefits cognitive performance.
Imaging Neurosci (Camb). 2025 Sep 9;3. doi: 10.1162/IMAG.a.138. eCollection 2025.
3
Cortical morphology changes in default mode network regions as predictors of cognitive decline in relation to amyloid and tau deposits.
Brain Commun. 2025 Aug 28;7(5):fcaf320. doi: 10.1093/braincomms/fcaf320. eCollection 2025.
5
Hubs, influencers, and communities of executive functions: a task-based fMRI graph analysis.
Front Hum Neurosci. 2025 Aug 25;19:1525497. doi: 10.3389/fnhum.2025.1525497. eCollection 2025.
7
Deep learning-based embedding of functional connectivity profiles for precision functional mapping.
Imaging Neurosci (Camb). 2025 Sep 3;3. doi: 10.1162/IMAG.a.129. eCollection 2025.
9
Large-scale comparative analysis reveals top graph signal processing features for subject identification.
bioRxiv. 2025 Aug 25:2025.08.20.671319. doi: 10.1101/2025.08.20.671319.
10
Early Brain Functional Connectivity Changes Induced by Antidepressants and Placebo.
bioRxiv. 2025 Aug 28:2025.08.22.671857. doi: 10.1101/2025.08.22.671857.

本文引用的文献

1
Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex.
Neuroimage. 2018 Apr 15;170:5-30. doi: 10.1016/j.neuroimage.2017.04.014. Epub 2017 Apr 13.
2
Topographic organization of the cerebral cortex and brain cartography.
Neuroimage. 2018 Apr 15;170:332-347. doi: 10.1016/j.neuroimage.2017.02.018. Epub 2017 Feb 20.
3
Human Connectomics across the Life Span.
Trends Cogn Sci. 2017 Jan;21(1):32-45. doi: 10.1016/j.tics.2016.10.005. Epub 2016 Nov 16.
4
Assessing Variations in Areal Organization for the Intrinsic Brain: From Fingerprints to Reliability.
Cereb Cortex. 2016 Oct 1;26(11):4192-4211. doi: 10.1093/cercor/bhw241.
5
Systems neuroscience: A modern map of the human cerebral cortex.
Nature. 2016 Aug 11;536(7615):152-4. doi: 10.1038/nature18914. Epub 2016 Jul 20.
6
A multi-modal parcellation of human cerebral cortex.
Nature. 2016 Aug 11;536(7615):171-178. doi: 10.1038/nature18933. Epub 2016 Jul 20.
7
Comprehensive cellular-resolution atlas of the adult human brain.
J Comp Neurol. 2016 Nov 1;524(16):3127-481. doi: 10.1002/cne.24080.
8
The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.
Cereb Cortex. 2016 Aug;26(8):3508-26. doi: 10.1093/cercor/bhw157. Epub 2016 May 26.
9
Task-free MRI predicts individual differences in brain activity during task performance.
Science. 2016 Apr 8;352(6282):216-20. doi: 10.1126/science.aad8127. Epub 2016 Apr 7.
10
Genetic and Environmental Contributions to Functional Connectivity Architecture of the Human Brain.
Cereb Cortex. 2016 May;26(5):2341-2352. doi: 10.1093/cercor/bhw027. Epub 2016 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验