Department of Electrical and Computer Engineering, ASTAR-NUS Clinical Imaging Research Centre, Singapore Institute for Neurotechnology and Memory Networks Program, National University of Singapore, Singapore.
VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA.
Cereb Cortex. 2018 Sep 1;28(9):3095-3114. doi: 10.1093/cercor/bhx179.
A central goal in systems neuroscience is the parcellation of the cerebral cortex into discrete neurobiological "atoms". Resting-state functional magnetic resonance imaging (rs-fMRI) offers the possibility of in vivo human cortical parcellation. Almost all previous parcellations relied on 1 of 2 approaches. The local gradient approach detects abrupt transitions in functional connectivity patterns. These transitions potentially reflect cortical areal boundaries defined by histology or visuotopic fMRI. By contrast, the global similarity approach clusters similar functional connectivity patterns regardless of spatial proximity, resulting in parcels with homogeneous (similar) rs-fMRI signals. Here, we propose a gradient-weighted Markov Random Field (gwMRF) model integrating local gradient and global similarity approaches. Using task-fMRI and rs-fMRI across diverse acquisition protocols, we found gwMRF parcellations to be more homogeneous than 4 previously published parcellations. Furthermore, gwMRF parcellations agreed with the boundaries of certain cortical areas defined using histology and visuotopic fMRI. Some parcels captured subareal (somatotopic and visuotopic) features that likely reflect distinct computational units within known cortical areas. These results suggest that gwMRF parcellations reveal neurobiologically meaningful features of brain organization and are potentially useful for future applications requiring dimensionality reduction of voxel-wise fMRI data. Multiresolution parcellations generated from 1489 participants are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal).
大脑皮层的离散神经生物学“原子”划分是系统神经科学的一个核心目标。静息态功能磁共振成像(rs-fMRI)为在体人类皮质划分提供了可能。几乎所有以前的划分都依赖于以下两种方法之一。局部梯度方法检测功能连接模式的突然转变。这些转变可能反映了由组织学或视拓扑 fMRI 定义的皮质区域边界。相比之下,全局相似性方法聚类相似的功能连接模式,而不考虑空间接近度,从而产生具有均匀(相似)rs-fMRI 信号的区室。在这里,我们提出了一种梯度加权马尔可夫随机场(gwMRF)模型,该模型集成了局部梯度和全局相似性方法。使用跨多种采集方案的任务 fMRI 和 rs-fMRI,我们发现 gwMRF 分区比以前发表的 4 种分区更均匀。此外,gwMRF 分区与使用组织学和视拓扑 fMRI 定义的某些皮质区域的边界一致。一些区室捕获了亚区(躯体和视拓扑)特征,这可能反映了已知皮质区域内的不同计算单元。这些结果表明,gwMRF 分区揭示了大脑组织的神经生物学有意义的特征,并且对于需要降低体素 fMRI 数据维度的未来应用可能是有用的。从 1489 名参与者生成的多分辨率分区可在(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal)上公开获取。