Nashine Hemant Kumar, Arab Reza, Agarwal Ravi P, De la Sen Manuel
Department of Mathematics, Texas A&M University, Kingsville, Texas 78363-8202 USA.
Department of Mathematics, Sari Branch, Islamic Azad University, Sari, Iran.
J Inequal Appl. 2017;2017(1):225. doi: 10.1186/s13660-017-1497-6. Epub 2017 Sep 15.
In the present study, we work on the problem of the existence of positive solutions of fractional integral equations by means of measures of noncompactness in association with Darbo's fixed point theorem. To achieve the goal, we first establish new fixed point theorems using a new contractive condition of the measure of noncompactness in Banach spaces. By doing this we generalize Darbo's fixed point theorem along with some recent results of (Aghajani (J. Comput. Appl. Math. 260:67-77, 2014)), (Aghajani (Bull. Belg. Math. Soc. Simon Stevin 20(2):345-358, 2013)), (Arab (Mediterr. J. Math. 13(2):759-773, 2016)), (Banaś (Dyn. Syst. Appl. 18:251-264, 2009)), and (Samadi (Abstr. Appl. Anal. 2014:852324, 2014)). We also derive corresponding coupled fixed point results. Finally, we give an illustrative example to verify the effectiveness and applicability of our results.
在本研究中,我们借助非紧性测度并结合达尔博不动点定理来研究分数阶积分方程正解的存在性问题。为实现这一目标,我们首先在巴拿赫空间中利用一种新的非紧性测度收缩条件建立新的不动点定理。通过这样做,我们推广了达尔博不动点定理以及(阿加贾尼(《计算与应用数学杂志》260:67 - 77,2014))、(阿加贾尼(《比利时数学学会西蒙·斯蒂文通报》20(2):345 - 358,2013))、(阿拉布(《地中海数学杂志》13(2):759 - 773,2016))、(巴纳ś(《动力系统与应用》18:251 - 264,2009))和(萨马迪(《抽象与应用分析》2014:852324,2014))的一些近期结果。我们还推导了相应的耦合不动点结果。最后,我们给出一个说明性例子来验证我们结果的有效性和适用性。