Department of Mechanical Engineering and Microsystems Fabrication Laboratory, Indian Institute of Technology , Kanpur 208016, India.
ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38507-38521. doi: 10.1021/acsami.7b11262. Epub 2017 Oct 24.
Printed electronics is widely gaining much attention for compact and high-performance energy-storage devices because of the advancement of flexible electronics. The development of a low-cost current collector, selection, and utilization of the proper material deposition tool and improvement of the device energy density are major challenges for the existing flexible supercapacitors. In this paper, we have reported an inkjet-printed solid-state asymmetric supercapacitor on commercial A4 paper using a low-cost desktop printer (EPSON L130). The physical properties of all inks have been carefully optimized so that the developed inks are within the printable range, i.e., Fromm number of 4 < Z < 14 for all inks. The paper substrate is made conducting (sheet resistance ∼ 1.6 Ω/sq) by printing 40 layers of conducting graphene oxide (GO) ink on its surface. The developed conducting patterns on paper are further printed with a GO-MnO nanocomposite ink to make a positive electrode, and another such structure is printed with activated carbon ink to form a negative electrode. A combination of both of these electrodes is outlaid by fabricating an asymmetric supercapacitor. The assembled asymmetric supercapacitor with poly(vinyl alcohol) (PVA)-LiCl gel electrolyte shows a stable potential window of 0-2.0 V and exhibits outstanding flexibility, good cyclic stability, high rate capability, and high energy density. The fabricated paper-substrate-based flexible asymmetric supercapacitor also displays an excellent electrochemical performances, e.g., a maximum areal capacitance of 1.586 F/cm (1023 F/g) at a current density of 4 mA/cm, highest energy density of 22 mWh/cm at a power density of 0.099 W/cm, a capacity retention of 89.6% even after 9000 charge-discharge cycles, and a low charge-transfer resistance of 2.3 Ω. So, utilization of inkjet printing for the development of paper-based flexible electronics has a strong potential for embedding into the next generation low-cost, compact, and wearable energy-storage devices and other printed electronic applications.
印刷电子技术因其在柔性电子学方面的进展而受到广泛关注,因为它可以用于制造紧凑型和高性能储能器件。对于现有的柔性超级电容器,开发低成本集流器、选择和利用适当的材料沉积工具以及提高器件能量密度是主要挑战。在本文中,我们使用低成本的桌面打印机(爱普生 L130)在商业 A4 纸上报告了一种喷墨打印的固态不对称超级电容器。我们仔细优化了所有油墨的物理性能,使得开发的油墨处于可打印范围内,即所有油墨的 Fromm 数 4<Z<14。纸基板通过在其表面上打印 40 层导电氧化石墨烯(GO)油墨使其具有导电性(方阻∼1.6Ω/sq)。在开发的纸基导电图案上进一步打印 GO-MnO 纳米复合材料油墨以制作正极,并用另一种结构的活性炭油墨制作负极。通过将这两个电极组合来制作不对称超级电容器。用聚(乙烯醇)(PVA)-LiCl 凝胶电解质组装的不对称超级电容器具有稳定的 0-2.0 V 电势窗口,并表现出出色的柔韧性、良好的循环稳定性、高倍率性能和高能量密度。基于制造的纸基板的柔性不对称超级电容器还具有出色的电化学性能,例如在 4 mA/cm 的电流密度下具有 1.586 F/cm(1023 F/g)的最大面电容、在 0.099 W/cm 的功率密度下具有 22 mWh/cm 的最高能量密度、即使经过 9000 次充放电循环后仍保持 89.6%的容量保持率,以及 2.3 Ω 的低电荷转移电阻。因此,喷墨打印在开发基于纸张的柔性电子产品方面具有很大的潜力,可以将其应用于下一代低成本、紧凑型和可穿戴储能设备以及其他印刷电子产品中。