Suppr超能文献

关于蛋白质生物合成中的通用编码事件。

On universal coding events in protein biogenesis.

作者信息

Kubyshkin Vladimir, Acevedo-Rocha Carlos G, Budisa Nediljko

机构信息

Berlin Institute of Technology/TU Berlin, Department of Chemistry, Biocatalysis Group, Müller-Breslau-Straße 10, D-10623 Berlin, Germany.

Biosyntia ApS, 2100 Copenhagen, Denmark.

出版信息

Biosystems. 2018 Feb;164:16-25. doi: 10.1016/j.biosystems.2017.10.004. Epub 2017 Oct 10.

Abstract

The complete ribosomal protein synthesis cycle and codon-amino acids associations are universally preserved in all life taxa on Earth. This process is accompanied by a set of hierarchically organized recognition and controlling events at different complexity levels. It starts with amino acid activation by aminoacyl tRNA synthetases (aaRS) followed by matching with the acceptor units of their cognate tRNAs ("operational RNA code") and ribosomal codon-anticodon pairing of messenger RNA ("triplet code"). However, this codon-anticodon matching is possible only when protein translation machinery (translation factors, ribosome) accepts an esterified amino acid. This capacity ("charge code") correlates mainly with the amino acid nature and the identity elements in the tRNA 3D structure. A fourth potential "folding code" (also referred as "stereochemical code") between the translation dynamics, sequence composition and folding of the resulting protein can also be defined in the frame of the 'Anfinsen dogma' followed by post-translational modifications. All these coding events as well as the basic chemistry of life are deemed invariant across biological taxa due to the horizontal gene transfer (HGT) making the 'universal genetic code' the 'lingua franca' of life of earth. When cells (or organelles) are prevented from transmitting genetic information (i.e., HGT) the deviations in the above-mentioned coding events become inevitable. A better understanding of these codes, in particular the mechanisms of their conservation in the context of HGT could provide a guide for the experimental engineering of the ribosomal protein biosynthesis machinery. This is highly relevant, among others, in attempts to create synthetic life forms in genetic isolation by using tailored "minimal genomes" and may explain the necessity for multiple coding evens in nature.

摘要

完整的核糖体蛋白质合成循环以及密码子与氨基酸的关联在地球上所有生命分类群中普遍存在。这一过程伴随着一系列在不同复杂程度上分层组织的识别和控制事件。它始于氨酰tRNA合成酶(aaRS)对氨基酸的激活,随后与它们同源tRNA的受体单元匹配(“操作RNA密码”)以及信使RNA的核糖体密码子-反密码子配对(“三联体密码”)。然而,只有当蛋白质翻译机制(翻译因子、核糖体)接受酯化氨基酸时,这种密码子-反密码子匹配才有可能。这种能力(“电荷密码”)主要与氨基酸性质以及tRNA三维结构中的识别元件相关。在遵循“安芬森法则”并进行翻译后修饰的框架内,还可以定义翻译动力学、所得蛋白质的序列组成和折叠之间的第四个潜在“折叠密码”(也称为“立体化学密码”)。由于水平基因转移(HGT),所有这些编码事件以及生命的基本化学性质在生物分类群中被认为是不变的,这使得“通用遗传密码”成为地球生命的“通用语言”。当细胞(或细胞器)被阻止传递遗传信息(即HGT)时,上述编码事件中的偏差就不可避免。更好地理解这些密码子,特别是它们在HGT背景下的保守机制,可为核糖体蛋白质生物合成机制的实验工程提供指导。这在通过使用定制的“最小基因组”在遗传隔离中创造合成生命形式的尝试中尤其相关,并且可以解释自然界中多种编码事件的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验