Suppr超能文献

乙醇胺缩醛磷脂水解在细菌脂多糖引发巨噬细胞以增强花生四烯酸释放中的关键作用。

Essential Role for Ethanolamine Plasmalogen Hydrolysis in Bacterial Lipopolysaccharide Priming of Macrophages for Enhanced Arachidonic Acid Release.

作者信息

Gil-de-Gómez Luis, Astudillo Alma M, Lebrero Patricia, Balboa María A, Balsinde Jesús

机构信息

Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.

Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.

出版信息

Front Immunol. 2017 Sep 29;8:1251. doi: 10.3389/fimmu.2017.01251. eCollection 2017.

Abstract

Due to their high content in esterified arachidonic acid (AA), macrophages provide large amounts of eicosanoids during innate immune reactions. Bacterial lipopolysaccharide (LPS) is a poor trigger of AA mobilization in macrophages but does have the capacity to prime these cells for greatly increased AA release upon subsequent stimulation. In this work, we have studied molecular mechanisms underlying this phenomenon. By using mass spectrometry-based lipidomic analyses, we show in this work that LPS-primed zymosan-stimulated macrophages exhibit an elevated consumption of a particular phospholipid species, i.e., the ethanolamine plasmalogens, which results from reduced remodeling of phospholipids coenzyme A-independent transacylation reactions. Importantly however, LPS-primed macrophages show no changes in their capacity to directly incorporate AA into phospholipids CoA-dependent acylation reactions. The essential role for ethanolamine plasmalogen hydrolysis in LPS priming is further demonstrated by the use of plasmalogen-deficient cells. These cells, while responding normally to zymosan by releasing quantities of AA similar to those released by cells expressing normal plasmalogen levels under the same conditions, fail to show an LPS-primed response to the same stimulus, thus unambiguously demonstrating a cause-effect relationship between LPS priming and plasmalogen hydrolysis. Collectively, these results suggest a hitherto unrecognized role for ethanolamine plasmalogen hydrolysis and CoA-independent transacylation reactions in modulating the eicosanoid biosynthetic response.

摘要

由于巨噬细胞中酯化花生四烯酸(AA)含量高,在天然免疫反应期间可提供大量类花生酸。细菌脂多糖(LPS)在巨噬细胞中是AA动员的弱触发因素,但确实有能力使这些细胞致敏,以便在随后受到刺激时大幅增加AA释放。在这项研究中,我们研究了这一现象背后的分子机制。通过基于质谱的脂质组学分析,我们在这项研究中表明,LPS致敏的酵母聚糖刺激的巨噬细胞表现出特定磷脂种类即乙醇胺缩醛磷脂的消耗增加,这是由磷脂辅酶A非依赖性转酰基反应的重塑减少所致。然而重要的是,LPS致敏的巨噬细胞在将AA直接掺入磷脂的辅酶A依赖性酰化反应的能力方面没有变化。使用缺乏缩醛磷脂的细胞进一步证明了乙醇胺缩醛磷脂水解在LPS致敏中的重要作用。这些细胞在对酵母聚糖的反应中,释放的AA量与在相同条件下表达正常缩醛磷脂水平的细胞释放的量相似,但对相同刺激未能表现出LPS致敏反应,从而明确证明了LPS致敏与缩醛磷脂水解之间的因果关系。总体而言,这些结果表明乙醇胺缩醛磷脂水解和辅酶A非依赖性转酰基反应在调节类花生酸生物合成反应中具有迄今未被认识的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb03/5626835/732207a528a9/fimmu-08-01251-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验