Ramos T, Jørgensen J S, Andreasen J W
J Opt Soc Am A Opt Image Sci Vis. 2017 Oct 1;34(10):1830-1843. doi: 10.1364/JOSAA.34.001830.
X-ray computerized tomography (CT) is a 3D imaging technique that makes use of x-ray illumination and image reconstruction techniques to reproduce the internal cross-sections of a sample. Tomographic projection data usually require an initial relative alignment or knowledge of the exact object position and orientation with respect to the detector. As tomographic imaging reaches increasingly better resolution, thermal drifts, mechanical instabilities, and equipment limitations are becoming the main dominant factors contributing to sample positioning uncertainties that will further introduce reconstruction artifacts and limit the attained resolution in the final tomographic reconstruction. Alignment algorithms that require manual interaction impede data analysis with ever-increasing data acquisition rates, supplied by more brilliant sources. We present in this paper an iterative reconstruction algorithm for wrapped phase projection data and an alignment algorithm that automatically takes 5 degrees of freedom, including the possible linear and angular motion errors, into consideration. The presented concepts are applied to simulated and real measured phase-contrast data, exhibiting a possible improvement in the reconstruction resolution. A MATLAB implementation is made publicly available and will allow robust analysis of large volumes of phase-contrast tomography data.
X射线计算机断层扫描(CT)是一种三维成像技术,它利用X射线照明和图像重建技术来重现样品的内部横截面。断层投影数据通常需要初始的相对对准,或者需要知道样品相对于探测器的确切位置和方向。随着断层成像分辨率的不断提高,热漂移、机械不稳定性和设备限制正成为导致样品定位不确定性的主要因素,这些不确定性将进一步引入重建伪影,并限制最终断层重建中所能达到的分辨率。需要人工交互的对准算法阻碍了数据分析,因为更强大的光源提供了不断提高的数据采集速率。在本文中,我们提出了一种针对包裹相位投影数据的迭代重建算法和一种自动考虑包括可能的线性和角向运动误差在内的5个自由度的对准算法。所提出的概念应用于模拟和实际测量的相衬数据,显示出重建分辨率可能得到提高。一个MATLAB实现已公开可用,将允许对大量相衬断层扫描数据进行稳健分析。