Suppr超能文献

基于周期分层介质并矢格林函数的谱元边界积分法用于多尺度纳米光学散射分析

Spectral element boundary integral method with periodic layered medium dyadic Green's function for multiscale nano-optical scattering analysis.

作者信息

Niu Jun, Ren Yi, Liu Qing Huo

出版信息

Opt Express. 2017 Oct 2;25(20):24199-24214. doi: 10.1364/OE.25.024199.

Abstract

In this work, we propose a numerical solver combining the spectral element - boundary integral (SEBI) method with the periodic layered medium dyadic Green's function. The periodic layered medium dyadic Green's function is formulated under matrix representation. The surface integral equations (SIEs) are then implemented as the radiation boundary condition to truncate the top and bottom computation domain. After describing the interior computation domain with the vector wave equations, and treating the lateral boundaries with Bloch periodic boundary conditions, the whole computation domains are discretized with mixed-order Gauss- Lobatto-Legendre basis functions in the SEBI method. This method avoids the discretization of the top and bottom layered media, so it can be much more efficient than conventional methods. Numerical results validate the proposed solver with fast convergence throughout the whole computation domain and good performance for typical multiscale nano-optical applications.

摘要

在这项工作中,我们提出了一种将谱元 - 边界积分(SEBI)方法与周期性分层介质并矢格林函数相结合的数值求解器。周期性分层介质并矢格林函数是在矩阵表示下制定的。然后将表面积分方程(SIEs)作为辐射边界条件来截断顶部和底部计算域。在用矢量波动方程描述内部计算域并使用布洛赫周期边界条件处理横向边界之后,在SEBI方法中用混合阶高斯 - 洛巴托 - 勒让德基函数对整个计算域进行离散化。该方法避免了顶部和底部分层介质的离散化,因此比传统方法效率更高。数值结果验证了所提出的求解器在整个计算域内具有快速收敛性,并且对于典型的多尺度纳米光学应用具有良好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验